Solve for d
d=\frac{\sqrt{33674}-180}{49}\approx 0.071525884
d=\frac{-\sqrt{33674}-180}{49}\approx -7.41846466
Share
Copied to clipboard
98d^{2}+720d-52=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-720±\sqrt{720^{2}-4\times 98\left(-52\right)}}{2\times 98}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 98 for a, 720 for b, and -52 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-720±\sqrt{518400-4\times 98\left(-52\right)}}{2\times 98}
Square 720.
d=\frac{-720±\sqrt{518400-392\left(-52\right)}}{2\times 98}
Multiply -4 times 98.
d=\frac{-720±\sqrt{518400+20384}}{2\times 98}
Multiply -392 times -52.
d=\frac{-720±\sqrt{538784}}{2\times 98}
Add 518400 to 20384.
d=\frac{-720±4\sqrt{33674}}{2\times 98}
Take the square root of 538784.
d=\frac{-720±4\sqrt{33674}}{196}
Multiply 2 times 98.
d=\frac{4\sqrt{33674}-720}{196}
Now solve the equation d=\frac{-720±4\sqrt{33674}}{196} when ± is plus. Add -720 to 4\sqrt{33674}.
d=\frac{\sqrt{33674}-180}{49}
Divide -720+4\sqrt{33674} by 196.
d=\frac{-4\sqrt{33674}-720}{196}
Now solve the equation d=\frac{-720±4\sqrt{33674}}{196} when ± is minus. Subtract 4\sqrt{33674} from -720.
d=\frac{-\sqrt{33674}-180}{49}
Divide -720-4\sqrt{33674} by 196.
d=\frac{\sqrt{33674}-180}{49} d=\frac{-\sqrt{33674}-180}{49}
The equation is now solved.
98d^{2}+720d-52=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
98d^{2}+720d-52-\left(-52\right)=-\left(-52\right)
Add 52 to both sides of the equation.
98d^{2}+720d=-\left(-52\right)
Subtracting -52 from itself leaves 0.
98d^{2}+720d=52
Subtract -52 from 0.
\frac{98d^{2}+720d}{98}=\frac{52}{98}
Divide both sides by 98.
d^{2}+\frac{720}{98}d=\frac{52}{98}
Dividing by 98 undoes the multiplication by 98.
d^{2}+\frac{360}{49}d=\frac{52}{98}
Reduce the fraction \frac{720}{98} to lowest terms by extracting and canceling out 2.
d^{2}+\frac{360}{49}d=\frac{26}{49}
Reduce the fraction \frac{52}{98} to lowest terms by extracting and canceling out 2.
d^{2}+\frac{360}{49}d+\left(\frac{180}{49}\right)^{2}=\frac{26}{49}+\left(\frac{180}{49}\right)^{2}
Divide \frac{360}{49}, the coefficient of the x term, by 2 to get \frac{180}{49}. Then add the square of \frac{180}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}+\frac{360}{49}d+\frac{32400}{2401}=\frac{26}{49}+\frac{32400}{2401}
Square \frac{180}{49} by squaring both the numerator and the denominator of the fraction.
d^{2}+\frac{360}{49}d+\frac{32400}{2401}=\frac{33674}{2401}
Add \frac{26}{49} to \frac{32400}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(d+\frac{180}{49}\right)^{2}=\frac{33674}{2401}
Factor d^{2}+\frac{360}{49}d+\frac{32400}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d+\frac{180}{49}\right)^{2}}=\sqrt{\frac{33674}{2401}}
Take the square root of both sides of the equation.
d+\frac{180}{49}=\frac{\sqrt{33674}}{49} d+\frac{180}{49}=-\frac{\sqrt{33674}}{49}
Simplify.
d=\frac{\sqrt{33674}-180}{49} d=\frac{-\sqrt{33674}-180}{49}
Subtract \frac{180}{49} from both sides of the equation.
x ^ 2 +\frac{360}{49}x -\frac{26}{49} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 98
r + s = -\frac{360}{49} rs = -\frac{26}{49}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{180}{49} - u s = -\frac{180}{49} + u
Two numbers r and s sum up to -\frac{360}{49} exactly when the average of the two numbers is \frac{1}{2}*-\frac{360}{49} = -\frac{180}{49}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{180}{49} - u) (-\frac{180}{49} + u) = -\frac{26}{49}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{26}{49}
\frac{32400}{2401} - u^2 = -\frac{26}{49}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{26}{49}-\frac{32400}{2401} = -\frac{33674}{2401}
Simplify the expression by subtracting \frac{32400}{2401} on both sides
u^2 = \frac{33674}{2401} u = \pm\sqrt{\frac{33674}{2401}} = \pm \frac{\sqrt{33674}}{49}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{180}{49} - \frac{\sqrt{33674}}{49} = -7.418 s = -\frac{180}{49} + \frac{\sqrt{33674}}{49} = 0.072
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}