Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

b^{2}=\frac{2}{98}
Divide both sides by 98.
b^{2}=\frac{1}{49}
Reduce the fraction \frac{2}{98} to lowest terms by extracting and canceling out 2.
b^{2}-\frac{1}{49}=0
Subtract \frac{1}{49} from both sides.
49b^{2}-1=0
Multiply both sides by 49.
\left(7b-1\right)\left(7b+1\right)=0
Consider 49b^{2}-1. Rewrite 49b^{2}-1 as \left(7b\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
b=\frac{1}{7} b=-\frac{1}{7}
To find equation solutions, solve 7b-1=0 and 7b+1=0.
b^{2}=\frac{2}{98}
Divide both sides by 98.
b^{2}=\frac{1}{49}
Reduce the fraction \frac{2}{98} to lowest terms by extracting and canceling out 2.
b=\frac{1}{7} b=-\frac{1}{7}
Take the square root of both sides of the equation.
b^{2}=\frac{2}{98}
Divide both sides by 98.
b^{2}=\frac{1}{49}
Reduce the fraction \frac{2}{98} to lowest terms by extracting and canceling out 2.
b^{2}-\frac{1}{49}=0
Subtract \frac{1}{49} from both sides.
b=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{49}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{1}{49} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\left(-\frac{1}{49}\right)}}{2}
Square 0.
b=\frac{0±\sqrt{\frac{4}{49}}}{2}
Multiply -4 times -\frac{1}{49}.
b=\frac{0±\frac{2}{7}}{2}
Take the square root of \frac{4}{49}.
b=\frac{1}{7}
Now solve the equation b=\frac{0±\frac{2}{7}}{2} when ± is plus.
b=-\frac{1}{7}
Now solve the equation b=\frac{0±\frac{2}{7}}{2} when ± is minus.
b=\frac{1}{7} b=-\frac{1}{7}
The equation is now solved.