Evaluate
12
Factor
2^{2}\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{81)}\phantom{1}\\81\overline{)972}\\\end{array}
Use the 1^{st} digit 9 from dividend 972
\begin{array}{l}\phantom{81)}0\phantom{2}\\81\overline{)972}\\\end{array}
Since 9 is less than 81, use the next digit 7 from dividend 972 and add 0 to the quotient
\begin{array}{l}\phantom{81)}0\phantom{3}\\81\overline{)972}\\\end{array}
Use the 2^{nd} digit 7 from dividend 972
\begin{array}{l}\phantom{81)}01\phantom{4}\\81\overline{)972}\\\phantom{81)}\underline{\phantom{}81\phantom{9}}\\\phantom{81)}16\\\end{array}
Find closest multiple of 81 to 97. We see that 1 \times 81 = 81 is the nearest. Now subtract 81 from 97 to get reminder 16. Add 1 to quotient.
\begin{array}{l}\phantom{81)}01\phantom{5}\\81\overline{)972}\\\phantom{81)}\underline{\phantom{}81\phantom{9}}\\\phantom{81)}162\\\end{array}
Use the 3^{rd} digit 2 from dividend 972
\begin{array}{l}\phantom{81)}012\phantom{6}\\81\overline{)972}\\\phantom{81)}\underline{\phantom{}81\phantom{9}}\\\phantom{81)}162\\\phantom{81)}\underline{\phantom{}162\phantom{}}\\\phantom{81)999}0\\\end{array}
Find closest multiple of 81 to 162. We see that 2 \times 81 = 162 is the nearest. Now subtract 162 from 162 to get reminder 0. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }0
Since 0 is less than 81, stop the division. The reminder is 0. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}