Evaluate
\frac{971}{52}\approx 18.673076923
Factor
\frac{971}{2 ^ {2} \cdot 13} = 18\frac{35}{52} = 18.673076923076923
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)971}\\\end{array}
Use the 1^{st} digit 9 from dividend 971
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)971}\\\end{array}
Since 9 is less than 52, use the next digit 7 from dividend 971 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)971}\\\end{array}
Use the 2^{nd} digit 7 from dividend 971
\begin{array}{l}\phantom{52)}01\phantom{4}\\52\overline{)971}\\\phantom{52)}\underline{\phantom{}52\phantom{9}}\\\phantom{52)}45\\\end{array}
Find closest multiple of 52 to 97. We see that 1 \times 52 = 52 is the nearest. Now subtract 52 from 97 to get reminder 45. Add 1 to quotient.
\begin{array}{l}\phantom{52)}01\phantom{5}\\52\overline{)971}\\\phantom{52)}\underline{\phantom{}52\phantom{9}}\\\phantom{52)}451\\\end{array}
Use the 3^{rd} digit 1 from dividend 971
\begin{array}{l}\phantom{52)}018\phantom{6}\\52\overline{)971}\\\phantom{52)}\underline{\phantom{}52\phantom{9}}\\\phantom{52)}451\\\phantom{52)}\underline{\phantom{}416\phantom{}}\\\phantom{52)9}35\\\end{array}
Find closest multiple of 52 to 451. We see that 8 \times 52 = 416 is the nearest. Now subtract 416 from 451 to get reminder 35. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }35
Since 35 is less than 52, stop the division. The reminder is 35. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}