Solve for x
x = \frac{\sqrt{872449249} - 5873}{4576} \approx 5.171383716
x=\frac{-\sqrt{872449249}-5873}{4576}\approx -7.738254346
Graph
Share
Copied to clipboard
2288x^{2}+5873x+5440=97000
Swap sides so that all variable terms are on the left hand side.
2288x^{2}+5873x+5440-97000=0
Subtract 97000 from both sides.
2288x^{2}+5873x-91560=0
Subtract 97000 from 5440 to get -91560.
x=\frac{-5873±\sqrt{5873^{2}-4\times 2288\left(-91560\right)}}{2\times 2288}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2288 for a, 5873 for b, and -91560 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5873±\sqrt{34492129-4\times 2288\left(-91560\right)}}{2\times 2288}
Square 5873.
x=\frac{-5873±\sqrt{34492129-9152\left(-91560\right)}}{2\times 2288}
Multiply -4 times 2288.
x=\frac{-5873±\sqrt{34492129+837957120}}{2\times 2288}
Multiply -9152 times -91560.
x=\frac{-5873±\sqrt{872449249}}{2\times 2288}
Add 34492129 to 837957120.
x=\frac{-5873±\sqrt{872449249}}{4576}
Multiply 2 times 2288.
x=\frac{\sqrt{872449249}-5873}{4576}
Now solve the equation x=\frac{-5873±\sqrt{872449249}}{4576} when ± is plus. Add -5873 to \sqrt{872449249}.
x=\frac{-\sqrt{872449249}-5873}{4576}
Now solve the equation x=\frac{-5873±\sqrt{872449249}}{4576} when ± is minus. Subtract \sqrt{872449249} from -5873.
x=\frac{\sqrt{872449249}-5873}{4576} x=\frac{-\sqrt{872449249}-5873}{4576}
The equation is now solved.
2288x^{2}+5873x+5440=97000
Swap sides so that all variable terms are on the left hand side.
2288x^{2}+5873x=97000-5440
Subtract 5440 from both sides.
2288x^{2}+5873x=91560
Subtract 5440 from 97000 to get 91560.
\frac{2288x^{2}+5873x}{2288}=\frac{91560}{2288}
Divide both sides by 2288.
x^{2}+\frac{5873}{2288}x=\frac{91560}{2288}
Dividing by 2288 undoes the multiplication by 2288.
x^{2}+\frac{5873}{2288}x=\frac{11445}{286}
Reduce the fraction \frac{91560}{2288} to lowest terms by extracting and canceling out 8.
x^{2}+\frac{5873}{2288}x+\left(\frac{5873}{4576}\right)^{2}=\frac{11445}{286}+\left(\frac{5873}{4576}\right)^{2}
Divide \frac{5873}{2288}, the coefficient of the x term, by 2 to get \frac{5873}{4576}. Then add the square of \frac{5873}{4576} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5873}{2288}x+\frac{34492129}{20939776}=\frac{11445}{286}+\frac{34492129}{20939776}
Square \frac{5873}{4576} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5873}{2288}x+\frac{34492129}{20939776}=\frac{872449249}{20939776}
Add \frac{11445}{286} to \frac{34492129}{20939776} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5873}{4576}\right)^{2}=\frac{872449249}{20939776}
Factor x^{2}+\frac{5873}{2288}x+\frac{34492129}{20939776}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5873}{4576}\right)^{2}}=\sqrt{\frac{872449249}{20939776}}
Take the square root of both sides of the equation.
x+\frac{5873}{4576}=\frac{\sqrt{872449249}}{4576} x+\frac{5873}{4576}=-\frac{\sqrt{872449249}}{4576}
Simplify.
x=\frac{\sqrt{872449249}-5873}{4576} x=\frac{-\sqrt{872449249}-5873}{4576}
Subtract \frac{5873}{4576} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}