Solve for j
j>4
Share
Copied to clipboard
97.76+19.2j<38.6j+20.16
Add -31.35 and 51.51 to get 20.16.
97.76+19.2j-38.6j<20.16
Subtract 38.6j from both sides.
97.76-19.4j<20.16
Combine 19.2j and -38.6j to get -19.4j.
-19.4j<20.16-97.76
Subtract 97.76 from both sides.
-19.4j<-77.6
Subtract 97.76 from 20.16 to get -77.6.
j>\frac{-77.6}{-19.4}
Divide both sides by -19.4. Since -19.4 is negative, the inequality direction is changed.
j>\frac{-776}{-194}
Expand \frac{-77.6}{-19.4} by multiplying both numerator and the denominator by 10.
j>4
Divide -776 by -194 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}