Solve for x
x=5
x = \frac{160}{97} = 1\frac{63}{97} \approx 1.649484536
Graph
Share
Copied to clipboard
97x^{2}-645x+800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-645\right)±\sqrt{\left(-645\right)^{2}-4\times 97\times 800}}{2\times 97}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 97 for a, -645 for b, and 800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-645\right)±\sqrt{416025-4\times 97\times 800}}{2\times 97}
Square -645.
x=\frac{-\left(-645\right)±\sqrt{416025-388\times 800}}{2\times 97}
Multiply -4 times 97.
x=\frac{-\left(-645\right)±\sqrt{416025-310400}}{2\times 97}
Multiply -388 times 800.
x=\frac{-\left(-645\right)±\sqrt{105625}}{2\times 97}
Add 416025 to -310400.
x=\frac{-\left(-645\right)±325}{2\times 97}
Take the square root of 105625.
x=\frac{645±325}{2\times 97}
The opposite of -645 is 645.
x=\frac{645±325}{194}
Multiply 2 times 97.
x=\frac{970}{194}
Now solve the equation x=\frac{645±325}{194} when ± is plus. Add 645 to 325.
x=5
Divide 970 by 194.
x=\frac{320}{194}
Now solve the equation x=\frac{645±325}{194} when ± is minus. Subtract 325 from 645.
x=\frac{160}{97}
Reduce the fraction \frac{320}{194} to lowest terms by extracting and canceling out 2.
x=5 x=\frac{160}{97}
The equation is now solved.
97x^{2}-645x+800=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
97x^{2}-645x+800-800=-800
Subtract 800 from both sides of the equation.
97x^{2}-645x=-800
Subtracting 800 from itself leaves 0.
\frac{97x^{2}-645x}{97}=-\frac{800}{97}
Divide both sides by 97.
x^{2}-\frac{645}{97}x=-\frac{800}{97}
Dividing by 97 undoes the multiplication by 97.
x^{2}-\frac{645}{97}x+\left(-\frac{645}{194}\right)^{2}=-\frac{800}{97}+\left(-\frac{645}{194}\right)^{2}
Divide -\frac{645}{97}, the coefficient of the x term, by 2 to get -\frac{645}{194}. Then add the square of -\frac{645}{194} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{645}{97}x+\frac{416025}{37636}=-\frac{800}{97}+\frac{416025}{37636}
Square -\frac{645}{194} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{645}{97}x+\frac{416025}{37636}=\frac{105625}{37636}
Add -\frac{800}{97} to \frac{416025}{37636} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{645}{194}\right)^{2}=\frac{105625}{37636}
Factor x^{2}-\frac{645}{97}x+\frac{416025}{37636}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{645}{194}\right)^{2}}=\sqrt{\frac{105625}{37636}}
Take the square root of both sides of the equation.
x-\frac{645}{194}=\frac{325}{194} x-\frac{645}{194}=-\frac{325}{194}
Simplify.
x=5 x=\frac{160}{97}
Add \frac{645}{194} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}