Evaluate
\frac{6}{5}=1.2
Factor
\frac{2 \cdot 3}{5} = 1\frac{1}{5} = 1.2
Share
Copied to clipboard
\begin{array}{l}\phantom{805)}\phantom{1}\\805\overline{)966}\\\end{array}
Use the 1^{st} digit 9 from dividend 966
\begin{array}{l}\phantom{805)}0\phantom{2}\\805\overline{)966}\\\end{array}
Since 9 is less than 805, use the next digit 6 from dividend 966 and add 0 to the quotient
\begin{array}{l}\phantom{805)}0\phantom{3}\\805\overline{)966}\\\end{array}
Use the 2^{nd} digit 6 from dividend 966
\begin{array}{l}\phantom{805)}00\phantom{4}\\805\overline{)966}\\\end{array}
Since 96 is less than 805, use the next digit 6 from dividend 966 and add 0 to the quotient
\begin{array}{l}\phantom{805)}00\phantom{5}\\805\overline{)966}\\\end{array}
Use the 3^{rd} digit 6 from dividend 966
\begin{array}{l}\phantom{805)}001\phantom{6}\\805\overline{)966}\\\phantom{805)}\underline{\phantom{}805\phantom{}}\\\phantom{805)}161\\\end{array}
Find closest multiple of 805 to 966. We see that 1 \times 805 = 805 is the nearest. Now subtract 805 from 966 to get reminder 161. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }161
Since 161 is less than 805, stop the division. The reminder is 161. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}