Evaluate
\frac{107}{41}\approx 2.609756098
Factor
\frac{107}{41} = 2\frac{25}{41} = 2.6097560975609757
Share
Copied to clipboard
\begin{array}{l}\phantom{369)}\phantom{1}\\369\overline{)963}\\\end{array}
Use the 1^{st} digit 9 from dividend 963
\begin{array}{l}\phantom{369)}0\phantom{2}\\369\overline{)963}\\\end{array}
Since 9 is less than 369, use the next digit 6 from dividend 963 and add 0 to the quotient
\begin{array}{l}\phantom{369)}0\phantom{3}\\369\overline{)963}\\\end{array}
Use the 2^{nd} digit 6 from dividend 963
\begin{array}{l}\phantom{369)}00\phantom{4}\\369\overline{)963}\\\end{array}
Since 96 is less than 369, use the next digit 3 from dividend 963 and add 0 to the quotient
\begin{array}{l}\phantom{369)}00\phantom{5}\\369\overline{)963}\\\end{array}
Use the 3^{rd} digit 3 from dividend 963
\begin{array}{l}\phantom{369)}002\phantom{6}\\369\overline{)963}\\\phantom{369)}\underline{\phantom{}738\phantom{}}\\\phantom{369)}225\\\end{array}
Find closest multiple of 369 to 963. We see that 2 \times 369 = 738 is the nearest. Now subtract 738 from 963 to get reminder 225. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }225
Since 225 is less than 369, stop the division. The reminder is 225. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}