Solve for x
x=-\frac{96y-55}{42\left(y+1\right)}
y\neq -1
Solve for y
y=-\frac{42x-55}{6\left(7x+16\right)}
x\neq -\frac{16}{7}
Graph
Share
Copied to clipboard
9600+4200x+9600y+4200xy=15100
Use the distributive property to multiply 9600+4200x by y.
4200x+9600y+4200xy=15100-9600
Subtract 9600 from both sides.
4200x+9600y+4200xy=5500
Subtract 9600 from 15100 to get 5500.
4200x+4200xy=5500-9600y
Subtract 9600y from both sides.
\left(4200+4200y\right)x=5500-9600y
Combine all terms containing x.
\left(4200y+4200\right)x=5500-9600y
The equation is in standard form.
\frac{\left(4200y+4200\right)x}{4200y+4200}=\frac{5500-9600y}{4200y+4200}
Divide both sides by 4200+4200y.
x=\frac{5500-9600y}{4200y+4200}
Dividing by 4200+4200y undoes the multiplication by 4200+4200y.
x=\frac{55-96y}{42\left(y+1\right)}
Divide 5500-9600y by 4200+4200y.
9600+4200x+9600y+4200xy=15100
Use the distributive property to multiply 9600+4200x by y.
4200x+9600y+4200xy=15100-9600
Subtract 9600 from both sides.
4200x+9600y+4200xy=5500
Subtract 9600 from 15100 to get 5500.
9600y+4200xy=5500-4200x
Subtract 4200x from both sides.
\left(9600+4200x\right)y=5500-4200x
Combine all terms containing y.
\left(4200x+9600\right)y=5500-4200x
The equation is in standard form.
\frac{\left(4200x+9600\right)y}{4200x+9600}=\frac{5500-4200x}{4200x+9600}
Divide both sides by 9600+4200x.
y=\frac{5500-4200x}{4200x+9600}
Dividing by 9600+4200x undoes the multiplication by 9600+4200x.
y=\frac{55-42x}{6\left(7x+16\right)}
Divide 5500-4200x by 9600+4200x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}