Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1920=x\left(3+2x+1\right)
Multiply both sides of the equation by 2.
1920=x\left(4+2x\right)
Add 3 and 1 to get 4.
1920=4x+2x^{2}
Use the distributive property to multiply x by 4+2x.
4x+2x^{2}=1920
Swap sides so that all variable terms are on the left hand side.
4x+2x^{2}-1920=0
Subtract 1920 from both sides.
2x^{2}+4x-1920=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-1920\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 4 for b, and -1920 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-1920\right)}}{2\times 2}
Square 4.
x=\frac{-4±\sqrt{16-8\left(-1920\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-4±\sqrt{16+15360}}{2\times 2}
Multiply -8 times -1920.
x=\frac{-4±\sqrt{15376}}{2\times 2}
Add 16 to 15360.
x=\frac{-4±124}{2\times 2}
Take the square root of 15376.
x=\frac{-4±124}{4}
Multiply 2 times 2.
x=\frac{120}{4}
Now solve the equation x=\frac{-4±124}{4} when ± is plus. Add -4 to 124.
x=30
Divide 120 by 4.
x=-\frac{128}{4}
Now solve the equation x=\frac{-4±124}{4} when ± is minus. Subtract 124 from -4.
x=-32
Divide -128 by 4.
x=30 x=-32
The equation is now solved.
1920=x\left(3+2x+1\right)
Multiply both sides of the equation by 2.
1920=x\left(4+2x\right)
Add 3 and 1 to get 4.
1920=4x+2x^{2}
Use the distributive property to multiply x by 4+2x.
4x+2x^{2}=1920
Swap sides so that all variable terms are on the left hand side.
2x^{2}+4x=1920
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+4x}{2}=\frac{1920}{2}
Divide both sides by 2.
x^{2}+\frac{4}{2}x=\frac{1920}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+2x=\frac{1920}{2}
Divide 4 by 2.
x^{2}+2x=960
Divide 1920 by 2.
x^{2}+2x+1^{2}=960+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=960+1
Square 1.
x^{2}+2x+1=961
Add 960 to 1.
\left(x+1\right)^{2}=961
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{961}
Take the square root of both sides of the equation.
x+1=31 x+1=-31
Simplify.
x=30 x=-32
Subtract 1 from both sides of the equation.