Evaluate
16
Factor
2^{4}
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)960}\\\end{array}
Use the 1^{st} digit 9 from dividend 960
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)960}\\\end{array}
Since 9 is less than 60, use the next digit 6 from dividend 960 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)960}\\\end{array}
Use the 2^{nd} digit 6 from dividend 960
\begin{array}{l}\phantom{60)}01\phantom{4}\\60\overline{)960}\\\phantom{60)}\underline{\phantom{}60\phantom{9}}\\\phantom{60)}36\\\end{array}
Find closest multiple of 60 to 96. We see that 1 \times 60 = 60 is the nearest. Now subtract 60 from 96 to get reminder 36. Add 1 to quotient.
\begin{array}{l}\phantom{60)}01\phantom{5}\\60\overline{)960}\\\phantom{60)}\underline{\phantom{}60\phantom{9}}\\\phantom{60)}360\\\end{array}
Use the 3^{rd} digit 0 from dividend 960
\begin{array}{l}\phantom{60)}016\phantom{6}\\60\overline{)960}\\\phantom{60)}\underline{\phantom{}60\phantom{9}}\\\phantom{60)}360\\\phantom{60)}\underline{\phantom{}360\phantom{}}\\\phantom{60)999}0\\\end{array}
Find closest multiple of 60 to 360. We see that 6 \times 60 = 360 is the nearest. Now subtract 360 from 360 to get reminder 0. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }0
Since 0 is less than 60, stop the division. The reminder is 0. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}