Evaluate
6
Factor
2\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{160)}\phantom{1}\\160\overline{)960}\\\end{array}
Use the 1^{st} digit 9 from dividend 960
\begin{array}{l}\phantom{160)}0\phantom{2}\\160\overline{)960}\\\end{array}
Since 9 is less than 160, use the next digit 6 from dividend 960 and add 0 to the quotient
\begin{array}{l}\phantom{160)}0\phantom{3}\\160\overline{)960}\\\end{array}
Use the 2^{nd} digit 6 from dividend 960
\begin{array}{l}\phantom{160)}00\phantom{4}\\160\overline{)960}\\\end{array}
Since 96 is less than 160, use the next digit 0 from dividend 960 and add 0 to the quotient
\begin{array}{l}\phantom{160)}00\phantom{5}\\160\overline{)960}\\\end{array}
Use the 3^{rd} digit 0 from dividend 960
\begin{array}{l}\phantom{160)}006\phantom{6}\\160\overline{)960}\\\phantom{160)}\underline{\phantom{}960\phantom{}}\\\phantom{160)999}0\\\end{array}
Find closest multiple of 160 to 960. We see that 6 \times 160 = 960 is the nearest. Now subtract 960 from 960 to get reminder 0. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }0
Since 0 is less than 160, stop the division. The reminder is 0. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}