Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

96x^{2}-\left(196x^{2}+84x+9\right)+80x=-5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(14x+3\right)^{2}.
96x^{2}-196x^{2}-84x-9+80x=-5
To find the opposite of 196x^{2}+84x+9, find the opposite of each term.
-100x^{2}-84x-9+80x=-5
Combine 96x^{2} and -196x^{2} to get -100x^{2}.
-100x^{2}-4x-9=-5
Combine -84x and 80x to get -4x.
-100x^{2}-4x-9+5=0
Add 5 to both sides.
-100x^{2}-4x-4=0
Add -9 and 5 to get -4.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-100\right)\left(-4\right)}}{2\left(-100\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -100 for a, -4 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-100\right)\left(-4\right)}}{2\left(-100\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+400\left(-4\right)}}{2\left(-100\right)}
Multiply -4 times -100.
x=\frac{-\left(-4\right)±\sqrt{16-1600}}{2\left(-100\right)}
Multiply 400 times -4.
x=\frac{-\left(-4\right)±\sqrt{-1584}}{2\left(-100\right)}
Add 16 to -1600.
x=\frac{-\left(-4\right)±12\sqrt{11}i}{2\left(-100\right)}
Take the square root of -1584.
x=\frac{4±12\sqrt{11}i}{2\left(-100\right)}
The opposite of -4 is 4.
x=\frac{4±12\sqrt{11}i}{-200}
Multiply 2 times -100.
x=\frac{4+12\sqrt{11}i}{-200}
Now solve the equation x=\frac{4±12\sqrt{11}i}{-200} when ± is plus. Add 4 to 12i\sqrt{11}.
x=\frac{-3\sqrt{11}i-1}{50}
Divide 4+12i\sqrt{11} by -200.
x=\frac{-12\sqrt{11}i+4}{-200}
Now solve the equation x=\frac{4±12\sqrt{11}i}{-200} when ± is minus. Subtract 12i\sqrt{11} from 4.
x=\frac{-1+3\sqrt{11}i}{50}
Divide 4-12i\sqrt{11} by -200.
x=\frac{-3\sqrt{11}i-1}{50} x=\frac{-1+3\sqrt{11}i}{50}
The equation is now solved.
96x^{2}-\left(196x^{2}+84x+9\right)+80x=-5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(14x+3\right)^{2}.
96x^{2}-196x^{2}-84x-9+80x=-5
To find the opposite of 196x^{2}+84x+9, find the opposite of each term.
-100x^{2}-84x-9+80x=-5
Combine 96x^{2} and -196x^{2} to get -100x^{2}.
-100x^{2}-4x-9=-5
Combine -84x and 80x to get -4x.
-100x^{2}-4x=-5+9
Add 9 to both sides.
-100x^{2}-4x=4
Add -5 and 9 to get 4.
\frac{-100x^{2}-4x}{-100}=\frac{4}{-100}
Divide both sides by -100.
x^{2}+\left(-\frac{4}{-100}\right)x=\frac{4}{-100}
Dividing by -100 undoes the multiplication by -100.
x^{2}+\frac{1}{25}x=\frac{4}{-100}
Reduce the fraction \frac{-4}{-100} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{1}{25}x=-\frac{1}{25}
Reduce the fraction \frac{4}{-100} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{1}{25}x+\left(\frac{1}{50}\right)^{2}=-\frac{1}{25}+\left(\frac{1}{50}\right)^{2}
Divide \frac{1}{25}, the coefficient of the x term, by 2 to get \frac{1}{50}. Then add the square of \frac{1}{50} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{25}x+\frac{1}{2500}=-\frac{1}{25}+\frac{1}{2500}
Square \frac{1}{50} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{25}x+\frac{1}{2500}=-\frac{99}{2500}
Add -\frac{1}{25} to \frac{1}{2500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{50}\right)^{2}=-\frac{99}{2500}
Factor x^{2}+\frac{1}{25}x+\frac{1}{2500}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{50}\right)^{2}}=\sqrt{-\frac{99}{2500}}
Take the square root of both sides of the equation.
x+\frac{1}{50}=\frac{3\sqrt{11}i}{50} x+\frac{1}{50}=-\frac{3\sqrt{11}i}{50}
Simplify.
x=\frac{-1+3\sqrt{11}i}{50} x=\frac{-3\sqrt{11}i-1}{50}
Subtract \frac{1}{50} from both sides of the equation.