Solve for x
x=20
x=-\frac{4}{5}=-0.8
Graph
Share
Copied to clipboard
96x-384+96\left(x+4\right)=10\left(x^{2}-16\right)
Use the distributive property to multiply 96 by x-4.
96x-384+96x+384=10\left(x^{2}-16\right)
Use the distributive property to multiply 96 by x+4.
192x-384+384=10\left(x^{2}-16\right)
Combine 96x and 96x to get 192x.
192x=10\left(x^{2}-16\right)
Add -384 and 384 to get 0.
192x=10x^{2}-160
Use the distributive property to multiply 10 by x^{2}-16.
192x-10x^{2}=-160
Subtract 10x^{2} from both sides.
192x-10x^{2}+160=0
Add 160 to both sides.
96x-5x^{2}+80=0
Divide both sides by 2.
-5x^{2}+96x+80=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=96 ab=-5\times 80=-400
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -5x^{2}+ax+bx+80. To find a and b, set up a system to be solved.
-1,400 -2,200 -4,100 -5,80 -8,50 -10,40 -16,25 -20,20
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -400.
-1+400=399 -2+200=198 -4+100=96 -5+80=75 -8+50=42 -10+40=30 -16+25=9 -20+20=0
Calculate the sum for each pair.
a=100 b=-4
The solution is the pair that gives sum 96.
\left(-5x^{2}+100x\right)+\left(-4x+80\right)
Rewrite -5x^{2}+96x+80 as \left(-5x^{2}+100x\right)+\left(-4x+80\right).
5x\left(-x+20\right)+4\left(-x+20\right)
Factor out 5x in the first and 4 in the second group.
\left(-x+20\right)\left(5x+4\right)
Factor out common term -x+20 by using distributive property.
x=20 x=-\frac{4}{5}
To find equation solutions, solve -x+20=0 and 5x+4=0.
96x-384+96\left(x+4\right)=10\left(x^{2}-16\right)
Use the distributive property to multiply 96 by x-4.
96x-384+96x+384=10\left(x^{2}-16\right)
Use the distributive property to multiply 96 by x+4.
192x-384+384=10\left(x^{2}-16\right)
Combine 96x and 96x to get 192x.
192x=10\left(x^{2}-16\right)
Add -384 and 384 to get 0.
192x=10x^{2}-160
Use the distributive property to multiply 10 by x^{2}-16.
192x-10x^{2}=-160
Subtract 10x^{2} from both sides.
192x-10x^{2}+160=0
Add 160 to both sides.
-10x^{2}+192x+160=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-192±\sqrt{192^{2}-4\left(-10\right)\times 160}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 192 for b, and 160 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-192±\sqrt{36864-4\left(-10\right)\times 160}}{2\left(-10\right)}
Square 192.
x=\frac{-192±\sqrt{36864+40\times 160}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-192±\sqrt{36864+6400}}{2\left(-10\right)}
Multiply 40 times 160.
x=\frac{-192±\sqrt{43264}}{2\left(-10\right)}
Add 36864 to 6400.
x=\frac{-192±208}{2\left(-10\right)}
Take the square root of 43264.
x=\frac{-192±208}{-20}
Multiply 2 times -10.
x=\frac{16}{-20}
Now solve the equation x=\frac{-192±208}{-20} when ± is plus. Add -192 to 208.
x=-\frac{4}{5}
Reduce the fraction \frac{16}{-20} to lowest terms by extracting and canceling out 4.
x=-\frac{400}{-20}
Now solve the equation x=\frac{-192±208}{-20} when ± is minus. Subtract 208 from -192.
x=20
Divide -400 by -20.
x=-\frac{4}{5} x=20
The equation is now solved.
96x-384+96\left(x+4\right)=10\left(x^{2}-16\right)
Use the distributive property to multiply 96 by x-4.
96x-384+96x+384=10\left(x^{2}-16\right)
Use the distributive property to multiply 96 by x+4.
192x-384+384=10\left(x^{2}-16\right)
Combine 96x and 96x to get 192x.
192x=10\left(x^{2}-16\right)
Add -384 and 384 to get 0.
192x=10x^{2}-160
Use the distributive property to multiply 10 by x^{2}-16.
192x-10x^{2}=-160
Subtract 10x^{2} from both sides.
-10x^{2}+192x=-160
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+192x}{-10}=-\frac{160}{-10}
Divide both sides by -10.
x^{2}+\frac{192}{-10}x=-\frac{160}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-\frac{96}{5}x=-\frac{160}{-10}
Reduce the fraction \frac{192}{-10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{96}{5}x=16
Divide -160 by -10.
x^{2}-\frac{96}{5}x+\left(-\frac{48}{5}\right)^{2}=16+\left(-\frac{48}{5}\right)^{2}
Divide -\frac{96}{5}, the coefficient of the x term, by 2 to get -\frac{48}{5}. Then add the square of -\frac{48}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{96}{5}x+\frac{2304}{25}=16+\frac{2304}{25}
Square -\frac{48}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{96}{5}x+\frac{2304}{25}=\frac{2704}{25}
Add 16 to \frac{2304}{25}.
\left(x-\frac{48}{5}\right)^{2}=\frac{2704}{25}
Factor x^{2}-\frac{96}{5}x+\frac{2304}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{48}{5}\right)^{2}}=\sqrt{\frac{2704}{25}}
Take the square root of both sides of the equation.
x-\frac{48}{5}=\frac{52}{5} x-\frac{48}{5}=-\frac{52}{5}
Simplify.
x=20 x=-\frac{4}{5}
Add \frac{48}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}