Solve for x
x = \frac{\sqrt{5689} + 83}{2} \approx 79.212729946
x = \frac{83 - \sqrt{5689}}{2} \approx 3.787270054
Graph
Share
Copied to clipboard
1920=\left(96+30-2x\right)\left(20-x\right)
Multiply 96 and 20 to get 1920.
1920=\left(126-2x\right)\left(20-x\right)
Add 96 and 30 to get 126.
1920=2520-166x+2x^{2}
Use the distributive property to multiply 126-2x by 20-x and combine like terms.
2520-166x+2x^{2}=1920
Swap sides so that all variable terms are on the left hand side.
2520-166x+2x^{2}-1920=0
Subtract 1920 from both sides.
600-166x+2x^{2}=0
Subtract 1920 from 2520 to get 600.
2x^{2}-166x+600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-166\right)±\sqrt{\left(-166\right)^{2}-4\times 2\times 600}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -166 for b, and 600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-166\right)±\sqrt{27556-4\times 2\times 600}}{2\times 2}
Square -166.
x=\frac{-\left(-166\right)±\sqrt{27556-8\times 600}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-166\right)±\sqrt{27556-4800}}{2\times 2}
Multiply -8 times 600.
x=\frac{-\left(-166\right)±\sqrt{22756}}{2\times 2}
Add 27556 to -4800.
x=\frac{-\left(-166\right)±2\sqrt{5689}}{2\times 2}
Take the square root of 22756.
x=\frac{166±2\sqrt{5689}}{2\times 2}
The opposite of -166 is 166.
x=\frac{166±2\sqrt{5689}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{5689}+166}{4}
Now solve the equation x=\frac{166±2\sqrt{5689}}{4} when ± is plus. Add 166 to 2\sqrt{5689}.
x=\frac{\sqrt{5689}+83}{2}
Divide 166+2\sqrt{5689} by 4.
x=\frac{166-2\sqrt{5689}}{4}
Now solve the equation x=\frac{166±2\sqrt{5689}}{4} when ± is minus. Subtract 2\sqrt{5689} from 166.
x=\frac{83-\sqrt{5689}}{2}
Divide 166-2\sqrt{5689} by 4.
x=\frac{\sqrt{5689}+83}{2} x=\frac{83-\sqrt{5689}}{2}
The equation is now solved.
1920=\left(96+30-2x\right)\left(20-x\right)
Multiply 96 and 20 to get 1920.
1920=\left(126-2x\right)\left(20-x\right)
Add 96 and 30 to get 126.
1920=2520-166x+2x^{2}
Use the distributive property to multiply 126-2x by 20-x and combine like terms.
2520-166x+2x^{2}=1920
Swap sides so that all variable terms are on the left hand side.
-166x+2x^{2}=1920-2520
Subtract 2520 from both sides.
-166x+2x^{2}=-600
Subtract 2520 from 1920 to get -600.
2x^{2}-166x=-600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-166x}{2}=-\frac{600}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{166}{2}\right)x=-\frac{600}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-83x=-\frac{600}{2}
Divide -166 by 2.
x^{2}-83x=-300
Divide -600 by 2.
x^{2}-83x+\left(-\frac{83}{2}\right)^{2}=-300+\left(-\frac{83}{2}\right)^{2}
Divide -83, the coefficient of the x term, by 2 to get -\frac{83}{2}. Then add the square of -\frac{83}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-83x+\frac{6889}{4}=-300+\frac{6889}{4}
Square -\frac{83}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-83x+\frac{6889}{4}=\frac{5689}{4}
Add -300 to \frac{6889}{4}.
\left(x-\frac{83}{2}\right)^{2}=\frac{5689}{4}
Factor x^{2}-83x+\frac{6889}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{83}{2}\right)^{2}}=\sqrt{\frac{5689}{4}}
Take the square root of both sides of the equation.
x-\frac{83}{2}=\frac{\sqrt{5689}}{2} x-\frac{83}{2}=-\frac{\sqrt{5689}}{2}
Simplify.
x=\frac{\sqrt{5689}+83}{2} x=\frac{83-\sqrt{5689}}{2}
Add \frac{83}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}