Evaluate
\frac{24}{17}\approx 1.411764706
Factor
\frac{2 ^ {3} \cdot 3}{17} = 1\frac{7}{17} = 1.411764705882353
Share
Copied to clipboard
\begin{array}{l}\phantom{68)}\phantom{1}\\68\overline{)96}\\\end{array}
Use the 1^{st} digit 9 from dividend 96
\begin{array}{l}\phantom{68)}0\phantom{2}\\68\overline{)96}\\\end{array}
Since 9 is less than 68, use the next digit 6 from dividend 96 and add 0 to the quotient
\begin{array}{l}\phantom{68)}0\phantom{3}\\68\overline{)96}\\\end{array}
Use the 2^{nd} digit 6 from dividend 96
\begin{array}{l}\phantom{68)}01\phantom{4}\\68\overline{)96}\\\phantom{68)}\underline{\phantom{}68\phantom{}}\\\phantom{68)}28\\\end{array}
Find closest multiple of 68 to 96. We see that 1 \times 68 = 68 is the nearest. Now subtract 68 from 96 to get reminder 28. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }28
Since 28 is less than 68, stop the division. The reminder is 28. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}