Evaluate
\frac{8}{3}\approx 2.666666667
Factor
\frac{2 ^ {3}}{3} = 2\frac{2}{3} = 2.6666666666666665
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)96}\\\end{array}
Use the 1^{st} digit 9 from dividend 96
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)96}\\\end{array}
Since 9 is less than 36, use the next digit 6 from dividend 96 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)96}\\\end{array}
Use the 2^{nd} digit 6 from dividend 96
\begin{array}{l}\phantom{36)}02\phantom{4}\\36\overline{)96}\\\phantom{36)}\underline{\phantom{}72\phantom{}}\\\phantom{36)}24\\\end{array}
Find closest multiple of 36 to 96. We see that 2 \times 36 = 72 is the nearest. Now subtract 72 from 96 to get reminder 24. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }24
Since 24 is less than 36, stop the division. The reminder is 24. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}