Evaluate
\frac{96}{13}\approx 7.384615385
Factor
\frac{2 ^ {5} \cdot 3}{13} = 7\frac{5}{13} = 7.384615384615385
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)96}\\\end{array}
Use the 1^{st} digit 9 from dividend 96
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)96}\\\end{array}
Since 9 is less than 13, use the next digit 6 from dividend 96 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)96}\\\end{array}
Use the 2^{nd} digit 6 from dividend 96
\begin{array}{l}\phantom{13)}07\phantom{4}\\13\overline{)96}\\\phantom{13)}\underline{\phantom{}91\phantom{}}\\\phantom{13)9}5\\\end{array}
Find closest multiple of 13 to 96. We see that 7 \times 13 = 91 is the nearest. Now subtract 91 from 96 to get reminder 5. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }5
Since 5 is less than 13, stop the division. The reminder is 5. The topmost line 07 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}