Solve for x
x=\frac{3}{512}=0.005859375
Graph
Share
Copied to clipboard
96=\frac{1}{64}x\times 16^{5}
Calculate 2 to the power of -6 and get \frac{1}{64}.
96=\frac{1}{64}x\times 1048576
Calculate 16 to the power of 5 and get 1048576.
96=16384x
Multiply \frac{1}{64} and 1048576 to get 16384.
16384x=96
Swap sides so that all variable terms are on the left hand side.
x=\frac{96}{16384}
Divide both sides by 16384.
x=\frac{3}{512}
Reduce the fraction \frac{96}{16384} to lowest terms by extracting and canceling out 32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}