Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

5376+18088=33v^{2}
Multiply both sides of the equation by 56.
23464=33v^{2}
Add 5376 and 18088 to get 23464.
33v^{2}=23464
Swap sides so that all variable terms are on the left hand side.
v^{2}=\frac{23464}{33}
Divide both sides by 33.
v=\frac{2\sqrt{193578}}{33} v=-\frac{2\sqrt{193578}}{33}
Take the square root of both sides of the equation.
5376+18088=33v^{2}
Multiply both sides of the equation by 56.
23464=33v^{2}
Add 5376 and 18088 to get 23464.
33v^{2}=23464
Swap sides so that all variable terms are on the left hand side.
33v^{2}-23464=0
Subtract 23464 from both sides.
v=\frac{0±\sqrt{0^{2}-4\times 33\left(-23464\right)}}{2\times 33}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 33 for a, 0 for b, and -23464 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{0±\sqrt{-4\times 33\left(-23464\right)}}{2\times 33}
Square 0.
v=\frac{0±\sqrt{-132\left(-23464\right)}}{2\times 33}
Multiply -4 times 33.
v=\frac{0±\sqrt{3097248}}{2\times 33}
Multiply -132 times -23464.
v=\frac{0±4\sqrt{193578}}{2\times 33}
Take the square root of 3097248.
v=\frac{0±4\sqrt{193578}}{66}
Multiply 2 times 33.
v=\frac{2\sqrt{193578}}{33}
Now solve the equation v=\frac{0±4\sqrt{193578}}{66} when ± is plus.
v=-\frac{2\sqrt{193578}}{33}
Now solve the equation v=\frac{0±4\sqrt{193578}}{66} when ± is minus.
v=\frac{2\sqrt{193578}}{33} v=-\frac{2\sqrt{193578}}{33}
The equation is now solved.