Solve for v
v = \frac{2 \sqrt{193578}}{33} \approx 26.665151472
v = -\frac{2 \sqrt{193578}}{33} \approx -26.665151472
Share
Copied to clipboard
5376+18088=33v^{2}
Multiply both sides of the equation by 56.
23464=33v^{2}
Add 5376 and 18088 to get 23464.
33v^{2}=23464
Swap sides so that all variable terms are on the left hand side.
v^{2}=\frac{23464}{33}
Divide both sides by 33.
v=\frac{2\sqrt{193578}}{33} v=-\frac{2\sqrt{193578}}{33}
Take the square root of both sides of the equation.
5376+18088=33v^{2}
Multiply both sides of the equation by 56.
23464=33v^{2}
Add 5376 and 18088 to get 23464.
33v^{2}=23464
Swap sides so that all variable terms are on the left hand side.
33v^{2}-23464=0
Subtract 23464 from both sides.
v=\frac{0±\sqrt{0^{2}-4\times 33\left(-23464\right)}}{2\times 33}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 33 for a, 0 for b, and -23464 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{0±\sqrt{-4\times 33\left(-23464\right)}}{2\times 33}
Square 0.
v=\frac{0±\sqrt{-132\left(-23464\right)}}{2\times 33}
Multiply -4 times 33.
v=\frac{0±\sqrt{3097248}}{2\times 33}
Multiply -132 times -23464.
v=\frac{0±4\sqrt{193578}}{2\times 33}
Take the square root of 3097248.
v=\frac{0±4\sqrt{193578}}{66}
Multiply 2 times 33.
v=\frac{2\sqrt{193578}}{33}
Now solve the equation v=\frac{0±4\sqrt{193578}}{66} when ± is plus.
v=-\frac{2\sqrt{193578}}{33}
Now solve the equation v=\frac{0±4\sqrt{193578}}{66} when ± is minus.
v=\frac{2\sqrt{193578}}{33} v=-\frac{2\sqrt{193578}}{33}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}