Evaluate
\frac{1909}{67}\approx 28.492537313
Factor
\frac{23 \cdot 83}{67} = 28\frac{33}{67} = 28.492537313432837
Share
Copied to clipboard
\begin{array}{l}\phantom{335)}\phantom{1}\\335\overline{)9545}\\\end{array}
Use the 1^{st} digit 9 from dividend 9545
\begin{array}{l}\phantom{335)}0\phantom{2}\\335\overline{)9545}\\\end{array}
Since 9 is less than 335, use the next digit 5 from dividend 9545 and add 0 to the quotient
\begin{array}{l}\phantom{335)}0\phantom{3}\\335\overline{)9545}\\\end{array}
Use the 2^{nd} digit 5 from dividend 9545
\begin{array}{l}\phantom{335)}00\phantom{4}\\335\overline{)9545}\\\end{array}
Since 95 is less than 335, use the next digit 4 from dividend 9545 and add 0 to the quotient
\begin{array}{l}\phantom{335)}00\phantom{5}\\335\overline{)9545}\\\end{array}
Use the 3^{rd} digit 4 from dividend 9545
\begin{array}{l}\phantom{335)}002\phantom{6}\\335\overline{)9545}\\\phantom{335)}\underline{\phantom{}670\phantom{9}}\\\phantom{335)}284\\\end{array}
Find closest multiple of 335 to 954. We see that 2 \times 335 = 670 is the nearest. Now subtract 670 from 954 to get reminder 284. Add 2 to quotient.
\begin{array}{l}\phantom{335)}002\phantom{7}\\335\overline{)9545}\\\phantom{335)}\underline{\phantom{}670\phantom{9}}\\\phantom{335)}2845\\\end{array}
Use the 4^{th} digit 5 from dividend 9545
\begin{array}{l}\phantom{335)}0028\phantom{8}\\335\overline{)9545}\\\phantom{335)}\underline{\phantom{}670\phantom{9}}\\\phantom{335)}2845\\\phantom{335)}\underline{\phantom{}2680\phantom{}}\\\phantom{335)9}165\\\end{array}
Find closest multiple of 335 to 2845. We see that 8 \times 335 = 2680 is the nearest. Now subtract 2680 from 2845 to get reminder 165. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }165
Since 165 is less than 335, stop the division. The reminder is 165. The topmost line 0028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}