Evaluate
\frac{476}{19}\approx 25.052631579
Factor
\frac{2 ^ {2} \cdot 7 \cdot 17}{19} = 25\frac{1}{19} = 25.05263157894737
Share
Copied to clipboard
\begin{array}{l}\phantom{38)}\phantom{1}\\38\overline{)952}\\\end{array}
Use the 1^{st} digit 9 from dividend 952
\begin{array}{l}\phantom{38)}0\phantom{2}\\38\overline{)952}\\\end{array}
Since 9 is less than 38, use the next digit 5 from dividend 952 and add 0 to the quotient
\begin{array}{l}\phantom{38)}0\phantom{3}\\38\overline{)952}\\\end{array}
Use the 2^{nd} digit 5 from dividend 952
\begin{array}{l}\phantom{38)}02\phantom{4}\\38\overline{)952}\\\phantom{38)}\underline{\phantom{}76\phantom{9}}\\\phantom{38)}19\\\end{array}
Find closest multiple of 38 to 95. We see that 2 \times 38 = 76 is the nearest. Now subtract 76 from 95 to get reminder 19. Add 2 to quotient.
\begin{array}{l}\phantom{38)}02\phantom{5}\\38\overline{)952}\\\phantom{38)}\underline{\phantom{}76\phantom{9}}\\\phantom{38)}192\\\end{array}
Use the 3^{rd} digit 2 from dividend 952
\begin{array}{l}\phantom{38)}025\phantom{6}\\38\overline{)952}\\\phantom{38)}\underline{\phantom{}76\phantom{9}}\\\phantom{38)}192\\\phantom{38)}\underline{\phantom{}190\phantom{}}\\\phantom{38)99}2\\\end{array}
Find closest multiple of 38 to 192. We see that 5 \times 38 = 190 is the nearest. Now subtract 190 from 192 to get reminder 2. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }2
Since 2 is less than 38, stop the division. The reminder is 2. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}