Evaluate
\frac{119}{18}\approx 6.611111111
Factor
\frac{7 \cdot 17}{2 \cdot 3 ^ {2}} = 6\frac{11}{18} = 6.611111111111111
Share
Copied to clipboard
\begin{array}{l}\phantom{144)}\phantom{1}\\144\overline{)952}\\\end{array}
Use the 1^{st} digit 9 from dividend 952
\begin{array}{l}\phantom{144)}0\phantom{2}\\144\overline{)952}\\\end{array}
Since 9 is less than 144, use the next digit 5 from dividend 952 and add 0 to the quotient
\begin{array}{l}\phantom{144)}0\phantom{3}\\144\overline{)952}\\\end{array}
Use the 2^{nd} digit 5 from dividend 952
\begin{array}{l}\phantom{144)}00\phantom{4}\\144\overline{)952}\\\end{array}
Since 95 is less than 144, use the next digit 2 from dividend 952 and add 0 to the quotient
\begin{array}{l}\phantom{144)}00\phantom{5}\\144\overline{)952}\\\end{array}
Use the 3^{rd} digit 2 from dividend 952
\begin{array}{l}\phantom{144)}006\phantom{6}\\144\overline{)952}\\\phantom{144)}\underline{\phantom{}864\phantom{}}\\\phantom{144)9}88\\\end{array}
Find closest multiple of 144 to 952. We see that 6 \times 144 = 864 is the nearest. Now subtract 864 from 952 to get reminder 88. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }88
Since 88 is less than 144, stop the division. The reminder is 88. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}