952 \%
Evaluate
\frac{238}{25}=9.52
Factor
\frac{2 \cdot 7 \cdot 17}{5 ^ {2}} = 9\frac{13}{25} = 9.52
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)952}\\\end{array}
Use the 1^{st} digit 9 from dividend 952
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)952}\\\end{array}
Since 9 is less than 100, use the next digit 5 from dividend 952 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)952}\\\end{array}
Use the 2^{nd} digit 5 from dividend 952
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)952}\\\end{array}
Since 95 is less than 100, use the next digit 2 from dividend 952 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)952}\\\end{array}
Use the 3^{rd} digit 2 from dividend 952
\begin{array}{l}\phantom{100)}009\phantom{6}\\100\overline{)952}\\\phantom{100)}\underline{\phantom{}900\phantom{}}\\\phantom{100)9}52\\\end{array}
Find closest multiple of 100 to 952. We see that 9 \times 100 = 900 is the nearest. Now subtract 900 from 952 to get reminder 52. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }52
Since 52 is less than 100, stop the division. The reminder is 52. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}