Evaluate
\frac{191}{2}=95.5
Factor
\frac{191}{2} = 95\frac{1}{2} = 95.5
Share
Copied to clipboard
95\times \frac{3}{5}+85\times \frac{10}{100}+100\times \frac{15}{100}+100\times \frac{15}{100}
Reduce the fraction \frac{60}{100} to lowest terms by extracting and canceling out 20.
\frac{95\times 3}{5}+85\times \frac{10}{100}+100\times \frac{15}{100}+100\times \frac{15}{100}
Express 95\times \frac{3}{5} as a single fraction.
\frac{285}{5}+85\times \frac{10}{100}+100\times \frac{15}{100}+100\times \frac{15}{100}
Multiply 95 and 3 to get 285.
57+85\times \frac{10}{100}+100\times \frac{15}{100}+100\times \frac{15}{100}
Divide 285 by 5 to get 57.
57+85\times \frac{1}{10}+100\times \frac{15}{100}+100\times \frac{15}{100}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
57+\frac{85}{10}+100\times \frac{15}{100}+100\times \frac{15}{100}
Multiply 85 and \frac{1}{10} to get \frac{85}{10}.
57+\frac{17}{2}+100\times \frac{15}{100}+100\times \frac{15}{100}
Reduce the fraction \frac{85}{10} to lowest terms by extracting and canceling out 5.
\frac{114}{2}+\frac{17}{2}+100\times \frac{15}{100}+100\times \frac{15}{100}
Convert 57 to fraction \frac{114}{2}.
\frac{114+17}{2}+100\times \frac{15}{100}+100\times \frac{15}{100}
Since \frac{114}{2} and \frac{17}{2} have the same denominator, add them by adding their numerators.
\frac{131}{2}+100\times \frac{15}{100}+100\times \frac{15}{100}
Add 114 and 17 to get 131.
\frac{131}{2}+100\times \frac{3}{20}+100\times \frac{15}{100}
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
\frac{131}{2}+\frac{100\times 3}{20}+100\times \frac{15}{100}
Express 100\times \frac{3}{20} as a single fraction.
\frac{131}{2}+\frac{300}{20}+100\times \frac{15}{100}
Multiply 100 and 3 to get 300.
\frac{131}{2}+15+100\times \frac{15}{100}
Divide 300 by 20 to get 15.
\frac{131}{2}+\frac{30}{2}+100\times \frac{15}{100}
Convert 15 to fraction \frac{30}{2}.
\frac{131+30}{2}+100\times \frac{15}{100}
Since \frac{131}{2} and \frac{30}{2} have the same denominator, add them by adding their numerators.
\frac{161}{2}+100\times \frac{15}{100}
Add 131 and 30 to get 161.
\frac{161}{2}+100\times \frac{3}{20}
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
\frac{161}{2}+\frac{100\times 3}{20}
Express 100\times \frac{3}{20} as a single fraction.
\frac{161}{2}+\frac{300}{20}
Multiply 100 and 3 to get 300.
\frac{161}{2}+15
Divide 300 by 20 to get 15.
\frac{161}{2}+\frac{30}{2}
Convert 15 to fraction \frac{30}{2}.
\frac{161+30}{2}
Since \frac{161}{2} and \frac{30}{2} have the same denominator, add them by adding their numerators.
\frac{191}{2}
Add 161 and 30 to get 191.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}