Evaluate
\frac{95}{12}\approx 7.916666667
Factor
\frac{5 \cdot 19}{2 ^ {2} \cdot 3} = 7\frac{11}{12} = 7.916666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)95}\\\end{array}
Use the 1^{st} digit 9 from dividend 95
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)95}\\\end{array}
Since 9 is less than 12, use the next digit 5 from dividend 95 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)95}\\\end{array}
Use the 2^{nd} digit 5 from dividend 95
\begin{array}{l}\phantom{12)}07\phantom{4}\\12\overline{)95}\\\phantom{12)}\underline{\phantom{}84\phantom{}}\\\phantom{12)}11\\\end{array}
Find closest multiple of 12 to 95. We see that 7 \times 12 = 84 is the nearest. Now subtract 84 from 95 to get reminder 11. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }11
Since 11 is less than 12, stop the division. The reminder is 11. The topmost line 07 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}