Solve for x
x>\frac{19251}{104}
Graph
Share
Copied to clipboard
9499+15x<119x-9752
Combine 143x and -24x to get 119x.
9499+15x-119x<-9752
Subtract 119x from both sides.
9499-104x<-9752
Combine 15x and -119x to get -104x.
-104x<-9752-9499
Subtract 9499 from both sides.
-104x<-19251
Subtract 9499 from -9752 to get -19251.
x>\frac{-19251}{-104}
Divide both sides by -104. Since -104 is negative, the inequality direction is changed.
x>\frac{19251}{104}
Fraction \frac{-19251}{-104} can be simplified to \frac{19251}{104} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}