Solve for u
u=\frac{\sqrt{7990}}{1598}\approx 0.055936671
u=-\frac{\sqrt{7990}}{1598}\approx -0.055936671
Share
Copied to clipboard
15040\times 34u^{2}=1600
Multiply 940 and 16 to get 15040.
511360u^{2}=1600
Multiply 15040 and 34 to get 511360.
u^{2}=\frac{1600}{511360}
Divide both sides by 511360.
u^{2}=\frac{5}{1598}
Reduce the fraction \frac{1600}{511360} to lowest terms by extracting and canceling out 320.
u=\frac{\sqrt{7990}}{1598} u=-\frac{\sqrt{7990}}{1598}
Take the square root of both sides of the equation.
15040\times 34u^{2}=1600
Multiply 940 and 16 to get 15040.
511360u^{2}=1600
Multiply 15040 and 34 to get 511360.
511360u^{2}-1600=0
Subtract 1600 from both sides.
u=\frac{0±\sqrt{0^{2}-4\times 511360\left(-1600\right)}}{2\times 511360}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 511360 for a, 0 for b, and -1600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{0±\sqrt{-4\times 511360\left(-1600\right)}}{2\times 511360}
Square 0.
u=\frac{0±\sqrt{-2045440\left(-1600\right)}}{2\times 511360}
Multiply -4 times 511360.
u=\frac{0±\sqrt{3272704000}}{2\times 511360}
Multiply -2045440 times -1600.
u=\frac{0±640\sqrt{7990}}{2\times 511360}
Take the square root of 3272704000.
u=\frac{0±640\sqrt{7990}}{1022720}
Multiply 2 times 511360.
u=\frac{\sqrt{7990}}{1598}
Now solve the equation u=\frac{0±640\sqrt{7990}}{1022720} when ± is plus.
u=-\frac{\sqrt{7990}}{1598}
Now solve the equation u=\frac{0±640\sqrt{7990}}{1022720} when ± is minus.
u=\frac{\sqrt{7990}}{1598} u=-\frac{\sqrt{7990}}{1598}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}