Solve for x
x = -\frac{17800}{7901} = -2\frac{1998}{7901} \approx -2.252879382
Graph
Share
Copied to clipboard
4705+94.1x=15.09\left(300+x\right)
Use the distributive property to multiply 94.1 by 50+x.
4705+94.1x=4527+15.09x
Use the distributive property to multiply 15.09 by 300+x.
4705+94.1x-15.09x=4527
Subtract 15.09x from both sides.
4705+79.01x=4527
Combine 94.1x and -15.09x to get 79.01x.
79.01x=4527-4705
Subtract 4705 from both sides.
79.01x=-178
Subtract 4705 from 4527 to get -178.
x=\frac{-178}{79.01}
Divide both sides by 79.01.
x=\frac{-17800}{7901}
Expand \frac{-178}{79.01} by multiplying both numerator and the denominator by 100.
x=-\frac{17800}{7901}
Fraction \frac{-17800}{7901} can be rewritten as -\frac{17800}{7901} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}