Skip to main content
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

-4q^{2}=-94
Subtract 94 from both sides. Anything subtracted from zero gives its negation.
q^{2}=\frac{-94}{-4}
Divide both sides by -4.
q^{2}=\frac{47}{2}
Reduce the fraction \frac{-94}{-4} to lowest terms by extracting and canceling out -2.
q=\frac{\sqrt{94}}{2} q=-\frac{\sqrt{94}}{2}
Take the square root of both sides of the equation.
-4q^{2}+94=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
q=\frac{0±\sqrt{0^{2}-4\left(-4\right)\times 94}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 0 for b, and 94 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{0±\sqrt{-4\left(-4\right)\times 94}}{2\left(-4\right)}
Square 0.
q=\frac{0±\sqrt{16\times 94}}{2\left(-4\right)}
Multiply -4 times -4.
q=\frac{0±\sqrt{1504}}{2\left(-4\right)}
Multiply 16 times 94.
q=\frac{0±4\sqrt{94}}{2\left(-4\right)}
Take the square root of 1504.
q=\frac{0±4\sqrt{94}}{-8}
Multiply 2 times -4.
q=-\frac{\sqrt{94}}{2}
Now solve the equation q=\frac{0±4\sqrt{94}}{-8} when ± is plus.
q=\frac{\sqrt{94}}{2}
Now solve the equation q=\frac{0±4\sqrt{94}}{-8} when ± is minus.
q=-\frac{\sqrt{94}}{2} q=\frac{\sqrt{94}}{2}
The equation is now solved.