Solve for q
q = \frac{\sqrt{94}}{2} \approx 4.847679857
q = -\frac{\sqrt{94}}{2} \approx -4.847679857
Share
Copied to clipboard
-4q^{2}=-94
Subtract 94 from both sides. Anything subtracted from zero gives its negation.
q^{2}=\frac{-94}{-4}
Divide both sides by -4.
q^{2}=\frac{47}{2}
Reduce the fraction \frac{-94}{-4} to lowest terms by extracting and canceling out -2.
q=\frac{\sqrt{94}}{2} q=-\frac{\sqrt{94}}{2}
Take the square root of both sides of the equation.
-4q^{2}+94=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
q=\frac{0±\sqrt{0^{2}-4\left(-4\right)\times 94}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 0 for b, and 94 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{0±\sqrt{-4\left(-4\right)\times 94}}{2\left(-4\right)}
Square 0.
q=\frac{0±\sqrt{16\times 94}}{2\left(-4\right)}
Multiply -4 times -4.
q=\frac{0±\sqrt{1504}}{2\left(-4\right)}
Multiply 16 times 94.
q=\frac{0±4\sqrt{94}}{2\left(-4\right)}
Take the square root of 1504.
q=\frac{0±4\sqrt{94}}{-8}
Multiply 2 times -4.
q=-\frac{\sqrt{94}}{2}
Now solve the equation q=\frac{0±4\sqrt{94}}{-8} when ± is plus.
q=\frac{\sqrt{94}}{2}
Now solve the equation q=\frac{0±4\sqrt{94}}{-8} when ± is minus.
q=-\frac{\sqrt{94}}{2} q=\frac{\sqrt{94}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}