Evaluate
\frac{94}{81}\approx 1.160493827
Factor
\frac{2 \cdot 47}{3 ^ {4}} = 1\frac{13}{81} = 1.1604938271604939
Share
Copied to clipboard
\begin{array}{l}\phantom{81)}\phantom{1}\\81\overline{)94}\\\end{array}
Use the 1^{st} digit 9 from dividend 94
\begin{array}{l}\phantom{81)}0\phantom{2}\\81\overline{)94}\\\end{array}
Since 9 is less than 81, use the next digit 4 from dividend 94 and add 0 to the quotient
\begin{array}{l}\phantom{81)}0\phantom{3}\\81\overline{)94}\\\end{array}
Use the 2^{nd} digit 4 from dividend 94
\begin{array}{l}\phantom{81)}01\phantom{4}\\81\overline{)94}\\\phantom{81)}\underline{\phantom{}81\phantom{}}\\\phantom{81)}13\\\end{array}
Find closest multiple of 81 to 94. We see that 1 \times 81 = 81 is the nearest. Now subtract 81 from 94 to get reminder 13. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }13
Since 13 is less than 81, stop the division. The reminder is 13. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}