Evaluate
\frac{94}{51}\approx 1.843137255
Factor
\frac{2 \cdot 47}{3 \cdot 17} = 1\frac{43}{51} = 1.8431372549019607
Share
Copied to clipboard
\begin{array}{l}\phantom{51)}\phantom{1}\\51\overline{)94}\\\end{array}
Use the 1^{st} digit 9 from dividend 94
\begin{array}{l}\phantom{51)}0\phantom{2}\\51\overline{)94}\\\end{array}
Since 9 is less than 51, use the next digit 4 from dividend 94 and add 0 to the quotient
\begin{array}{l}\phantom{51)}0\phantom{3}\\51\overline{)94}\\\end{array}
Use the 2^{nd} digit 4 from dividend 94
\begin{array}{l}\phantom{51)}01\phantom{4}\\51\overline{)94}\\\phantom{51)}\underline{\phantom{}51\phantom{}}\\\phantom{51)}43\\\end{array}
Find closest multiple of 51 to 94. We see that 1 \times 51 = 51 is the nearest. Now subtract 51 from 94 to get reminder 43. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }43
Since 43 is less than 51, stop the division. The reminder is 43. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}