Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

94=n^{2}-3n+4
Divide 8 by 2 to get 4.
n^{2}-3n+4=94
Swap sides so that all variable terms are on the left hand side.
n^{2}-3n+4-94=0
Subtract 94 from both sides.
n^{2}-3n-90=0
Subtract 94 from 4 to get -90.
n=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-90\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-3\right)±\sqrt{9-4\left(-90\right)}}{2}
Square -3.
n=\frac{-\left(-3\right)±\sqrt{9+360}}{2}
Multiply -4 times -90.
n=\frac{-\left(-3\right)±\sqrt{369}}{2}
Add 9 to 360.
n=\frac{-\left(-3\right)±3\sqrt{41}}{2}
Take the square root of 369.
n=\frac{3±3\sqrt{41}}{2}
The opposite of -3 is 3.
n=\frac{3\sqrt{41}+3}{2}
Now solve the equation n=\frac{3±3\sqrt{41}}{2} when ± is plus. Add 3 to 3\sqrt{41}.
n=\frac{3-3\sqrt{41}}{2}
Now solve the equation n=\frac{3±3\sqrt{41}}{2} when ± is minus. Subtract 3\sqrt{41} from 3.
n=\frac{3\sqrt{41}+3}{2} n=\frac{3-3\sqrt{41}}{2}
The equation is now solved.
94=n^{2}-3n+4
Divide 8 by 2 to get 4.
n^{2}-3n+4=94
Swap sides so that all variable terms are on the left hand side.
n^{2}-3n=94-4
Subtract 4 from both sides.
n^{2}-3n=90
Subtract 4 from 94 to get 90.
n^{2}-3n+\left(-\frac{3}{2}\right)^{2}=90+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-3n+\frac{9}{4}=90+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-3n+\frac{9}{4}=\frac{369}{4}
Add 90 to \frac{9}{4}.
\left(n-\frac{3}{2}\right)^{2}=\frac{369}{4}
Factor n^{2}-3n+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{3}{2}\right)^{2}}=\sqrt{\frac{369}{4}}
Take the square root of both sides of the equation.
n-\frac{3}{2}=\frac{3\sqrt{41}}{2} n-\frac{3}{2}=-\frac{3\sqrt{41}}{2}
Simplify.
n=\frac{3\sqrt{41}+3}{2} n=\frac{3-3\sqrt{41}}{2}
Add \frac{3}{2} to both sides of the equation.