Evaluate
\frac{9392}{399}\approx 23.538847118
Factor
\frac{2 ^ {4} \cdot 587}{3 \cdot 7 \cdot 19} = 23\frac{215}{399} = 23.538847117794486
Share
Copied to clipboard
\begin{array}{l}\phantom{399)}\phantom{1}\\399\overline{)9392}\\\end{array}
Use the 1^{st} digit 9 from dividend 9392
\begin{array}{l}\phantom{399)}0\phantom{2}\\399\overline{)9392}\\\end{array}
Since 9 is less than 399, use the next digit 3 from dividend 9392 and add 0 to the quotient
\begin{array}{l}\phantom{399)}0\phantom{3}\\399\overline{)9392}\\\end{array}
Use the 2^{nd} digit 3 from dividend 9392
\begin{array}{l}\phantom{399)}00\phantom{4}\\399\overline{)9392}\\\end{array}
Since 93 is less than 399, use the next digit 9 from dividend 9392 and add 0 to the quotient
\begin{array}{l}\phantom{399)}00\phantom{5}\\399\overline{)9392}\\\end{array}
Use the 3^{rd} digit 9 from dividend 9392
\begin{array}{l}\phantom{399)}002\phantom{6}\\399\overline{)9392}\\\phantom{399)}\underline{\phantom{}798\phantom{9}}\\\phantom{399)}141\\\end{array}
Find closest multiple of 399 to 939. We see that 2 \times 399 = 798 is the nearest. Now subtract 798 from 939 to get reminder 141. Add 2 to quotient.
\begin{array}{l}\phantom{399)}002\phantom{7}\\399\overline{)9392}\\\phantom{399)}\underline{\phantom{}798\phantom{9}}\\\phantom{399)}1412\\\end{array}
Use the 4^{th} digit 2 from dividend 9392
\begin{array}{l}\phantom{399)}0023\phantom{8}\\399\overline{)9392}\\\phantom{399)}\underline{\phantom{}798\phantom{9}}\\\phantom{399)}1412\\\phantom{399)}\underline{\phantom{}1197\phantom{}}\\\phantom{399)9}215\\\end{array}
Find closest multiple of 399 to 1412. We see that 3 \times 399 = 1197 is the nearest. Now subtract 1197 from 1412 to get reminder 215. Add 3 to quotient.
\text{Quotient: }23 \text{Reminder: }215
Since 215 is less than 399, stop the division. The reminder is 215. The topmost line 0023 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}