Evaluate
24
Factor
2^{3}\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{39)}\phantom{1}\\39\overline{)936}\\\end{array}
Use the 1^{st} digit 9 from dividend 936
\begin{array}{l}\phantom{39)}0\phantom{2}\\39\overline{)936}\\\end{array}
Since 9 is less than 39, use the next digit 3 from dividend 936 and add 0 to the quotient
\begin{array}{l}\phantom{39)}0\phantom{3}\\39\overline{)936}\\\end{array}
Use the 2^{nd} digit 3 from dividend 936
\begin{array}{l}\phantom{39)}02\phantom{4}\\39\overline{)936}\\\phantom{39)}\underline{\phantom{}78\phantom{9}}\\\phantom{39)}15\\\end{array}
Find closest multiple of 39 to 93. We see that 2 \times 39 = 78 is the nearest. Now subtract 78 from 93 to get reminder 15. Add 2 to quotient.
\begin{array}{l}\phantom{39)}02\phantom{5}\\39\overline{)936}\\\phantom{39)}\underline{\phantom{}78\phantom{9}}\\\phantom{39)}156\\\end{array}
Use the 3^{rd} digit 6 from dividend 936
\begin{array}{l}\phantom{39)}024\phantom{6}\\39\overline{)936}\\\phantom{39)}\underline{\phantom{}78\phantom{9}}\\\phantom{39)}156\\\phantom{39)}\underline{\phantom{}156\phantom{}}\\\phantom{39)999}0\\\end{array}
Find closest multiple of 39 to 156. We see that 4 \times 39 = 156 is the nearest. Now subtract 156 from 156 to get reminder 0. Add 4 to quotient.
\text{Quotient: }24 \text{Reminder: }0
Since 0 is less than 39, stop the division. The reminder is 0. The topmost line 024 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}