Evaluate
\frac{468}{41}\approx 11.414634146
Factor
\frac{2 ^ {2} \cdot 3 ^ {2} \cdot 13}{41} = 11\frac{17}{41} = 11.414634146341463
Share
Copied to clipboard
\begin{array}{l}\phantom{82)}\phantom{1}\\82\overline{)936}\\\end{array}
Use the 1^{st} digit 9 from dividend 936
\begin{array}{l}\phantom{82)}0\phantom{2}\\82\overline{)936}\\\end{array}
Since 9 is less than 82, use the next digit 3 from dividend 936 and add 0 to the quotient
\begin{array}{l}\phantom{82)}0\phantom{3}\\82\overline{)936}\\\end{array}
Use the 2^{nd} digit 3 from dividend 936
\begin{array}{l}\phantom{82)}01\phantom{4}\\82\overline{)936}\\\phantom{82)}\underline{\phantom{}82\phantom{9}}\\\phantom{82)}11\\\end{array}
Find closest multiple of 82 to 93. We see that 1 \times 82 = 82 is the nearest. Now subtract 82 from 93 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{82)}01\phantom{5}\\82\overline{)936}\\\phantom{82)}\underline{\phantom{}82\phantom{9}}\\\phantom{82)}116\\\end{array}
Use the 3^{rd} digit 6 from dividend 936
\begin{array}{l}\phantom{82)}011\phantom{6}\\82\overline{)936}\\\phantom{82)}\underline{\phantom{}82\phantom{9}}\\\phantom{82)}116\\\phantom{82)}\underline{\phantom{9}82\phantom{}}\\\phantom{82)9}34\\\end{array}
Find closest multiple of 82 to 116. We see that 1 \times 82 = 82 is the nearest. Now subtract 82 from 116 to get reminder 34. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }34
Since 34 is less than 82, stop the division. The reminder is 34. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}