Evaluate
78
Factor
2\times 3\times 13
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)936}\\\end{array}
Use the 1^{st} digit 9 from dividend 936
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)936}\\\end{array}
Since 9 is less than 12, use the next digit 3 from dividend 936 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)936}\\\end{array}
Use the 2^{nd} digit 3 from dividend 936
\begin{array}{l}\phantom{12)}07\phantom{4}\\12\overline{)936}\\\phantom{12)}\underline{\phantom{}84\phantom{9}}\\\phantom{12)9}9\\\end{array}
Find closest multiple of 12 to 93. We see that 7 \times 12 = 84 is the nearest. Now subtract 84 from 93 to get reminder 9. Add 7 to quotient.
\begin{array}{l}\phantom{12)}07\phantom{5}\\12\overline{)936}\\\phantom{12)}\underline{\phantom{}84\phantom{9}}\\\phantom{12)9}96\\\end{array}
Use the 3^{rd} digit 6 from dividend 936
\begin{array}{l}\phantom{12)}078\phantom{6}\\12\overline{)936}\\\phantom{12)}\underline{\phantom{}84\phantom{9}}\\\phantom{12)9}96\\\phantom{12)}\underline{\phantom{9}96\phantom{}}\\\phantom{12)999}0\\\end{array}
Find closest multiple of 12 to 96. We see that 8 \times 12 = 96 is the nearest. Now subtract 96 from 96 to get reminder 0. Add 8 to quotient.
\text{Quotient: }78 \text{Reminder: }0
Since 0 is less than 12, stop the division. The reminder is 0. The topmost line 078 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 78.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}