Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{117)}\phantom{1}\\117\overline{)936}\\\end{array}
Use the 1^{st} digit 9 from dividend 936
\begin{array}{l}\phantom{117)}0\phantom{2}\\117\overline{)936}\\\end{array}
Since 9 is less than 117, use the next digit 3 from dividend 936 and add 0 to the quotient
\begin{array}{l}\phantom{117)}0\phantom{3}\\117\overline{)936}\\\end{array}
Use the 2^{nd} digit 3 from dividend 936
\begin{array}{l}\phantom{117)}00\phantom{4}\\117\overline{)936}\\\end{array}
Since 93 is less than 117, use the next digit 6 from dividend 936 and add 0 to the quotient
\begin{array}{l}\phantom{117)}00\phantom{5}\\117\overline{)936}\\\end{array}
Use the 3^{rd} digit 6 from dividend 936
\begin{array}{l}\phantom{117)}008\phantom{6}\\117\overline{)936}\\\phantom{117)}\underline{\phantom{}936\phantom{}}\\\phantom{117)999}0\\\end{array}
Find closest multiple of 117 to 936. We see that 8 \times 117 = 936 is the nearest. Now subtract 936 from 936 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 117, stop the division. The reminder is 0. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}