Evaluate
\frac{9332}{31}\approx 301.032258065
Factor
\frac{2 ^ {2} \cdot 2333}{31} = 301\frac{1}{31} = 301.03225806451616
Share
Copied to clipboard
\begin{array}{l}\phantom{31)}\phantom{1}\\31\overline{)9332}\\\end{array}
Use the 1^{st} digit 9 from dividend 9332
\begin{array}{l}\phantom{31)}0\phantom{2}\\31\overline{)9332}\\\end{array}
Since 9 is less than 31, use the next digit 3 from dividend 9332 and add 0 to the quotient
\begin{array}{l}\phantom{31)}0\phantom{3}\\31\overline{)9332}\\\end{array}
Use the 2^{nd} digit 3 from dividend 9332
\begin{array}{l}\phantom{31)}03\phantom{4}\\31\overline{)9332}\\\phantom{31)}\underline{\phantom{}93\phantom{99}}\\\phantom{31)99}0\\\end{array}
Find closest multiple of 31 to 93. We see that 3 \times 31 = 93 is the nearest. Now subtract 93 from 93 to get reminder 0. Add 3 to quotient.
\begin{array}{l}\phantom{31)}03\phantom{5}\\31\overline{)9332}\\\phantom{31)}\underline{\phantom{}93\phantom{99}}\\\phantom{31)99}3\\\end{array}
Use the 3^{rd} digit 3 from dividend 9332
\begin{array}{l}\phantom{31)}030\phantom{6}\\31\overline{)9332}\\\phantom{31)}\underline{\phantom{}93\phantom{99}}\\\phantom{31)99}3\\\end{array}
Since 3 is less than 31, use the next digit 2 from dividend 9332 and add 0 to the quotient
\begin{array}{l}\phantom{31)}030\phantom{7}\\31\overline{)9332}\\\phantom{31)}\underline{\phantom{}93\phantom{99}}\\\phantom{31)99}32\\\end{array}
Use the 4^{th} digit 2 from dividend 9332
\begin{array}{l}\phantom{31)}0301\phantom{8}\\31\overline{)9332}\\\phantom{31)}\underline{\phantom{}93\phantom{99}}\\\phantom{31)99}32\\\phantom{31)}\underline{\phantom{99}31\phantom{}}\\\phantom{31)999}1\\\end{array}
Find closest multiple of 31 to 32. We see that 1 \times 31 = 31 is the nearest. Now subtract 31 from 32 to get reminder 1. Add 1 to quotient.
\text{Quotient: }301 \text{Reminder: }1
Since 1 is less than 31, stop the division. The reminder is 1. The topmost line 0301 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 301.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}