Evaluate
\frac{928}{11}\approx 84.363636364
Factor
\frac{2 ^ {5} \cdot 29}{11} = 84\frac{4}{11} = 84.36363636363636
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)928}\\\end{array}
Use the 1^{st} digit 9 from dividend 928
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)928}\\\end{array}
Since 9 is less than 11, use the next digit 2 from dividend 928 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)928}\\\end{array}
Use the 2^{nd} digit 2 from dividend 928
\begin{array}{l}\phantom{11)}08\phantom{4}\\11\overline{)928}\\\phantom{11)}\underline{\phantom{}88\phantom{9}}\\\phantom{11)9}4\\\end{array}
Find closest multiple of 11 to 92. We see that 8 \times 11 = 88 is the nearest. Now subtract 88 from 92 to get reminder 4. Add 8 to quotient.
\begin{array}{l}\phantom{11)}08\phantom{5}\\11\overline{)928}\\\phantom{11)}\underline{\phantom{}88\phantom{9}}\\\phantom{11)9}48\\\end{array}
Use the 3^{rd} digit 8 from dividend 928
\begin{array}{l}\phantom{11)}084\phantom{6}\\11\overline{)928}\\\phantom{11)}\underline{\phantom{}88\phantom{9}}\\\phantom{11)9}48\\\phantom{11)}\underline{\phantom{9}44\phantom{}}\\\phantom{11)99}4\\\end{array}
Find closest multiple of 11 to 48. We see that 4 \times 11 = 44 is the nearest. Now subtract 44 from 48 to get reminder 4. Add 4 to quotient.
\text{Quotient: }84 \text{Reminder: }4
Since 4 is less than 11, stop the division. The reminder is 4. The topmost line 084 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 84.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}