Evaluate
\frac{92347}{60428}\approx 1.528215397
Factor
\frac{92347}{2 ^ {2} \cdot 15107} = 1\frac{31919}{60428} = 1.5282153968359038
Share
Copied to clipboard
\begin{array}{l}\phantom{60428)}\phantom{1}\\60428\overline{)92347}\\\end{array}
Use the 1^{st} digit 9 from dividend 92347
\begin{array}{l}\phantom{60428)}0\phantom{2}\\60428\overline{)92347}\\\end{array}
Since 9 is less than 60428, use the next digit 2 from dividend 92347 and add 0 to the quotient
\begin{array}{l}\phantom{60428)}0\phantom{3}\\60428\overline{)92347}\\\end{array}
Use the 2^{nd} digit 2 from dividend 92347
\begin{array}{l}\phantom{60428)}00\phantom{4}\\60428\overline{)92347}\\\end{array}
Since 92 is less than 60428, use the next digit 3 from dividend 92347 and add 0 to the quotient
\begin{array}{l}\phantom{60428)}00\phantom{5}\\60428\overline{)92347}\\\end{array}
Use the 3^{rd} digit 3 from dividend 92347
\begin{array}{l}\phantom{60428)}000\phantom{6}\\60428\overline{)92347}\\\end{array}
Since 923 is less than 60428, use the next digit 4 from dividend 92347 and add 0 to the quotient
\begin{array}{l}\phantom{60428)}000\phantom{7}\\60428\overline{)92347}\\\end{array}
Use the 4^{th} digit 4 from dividend 92347
\begin{array}{l}\phantom{60428)}0000\phantom{8}\\60428\overline{)92347}\\\end{array}
Since 9234 is less than 60428, use the next digit 7 from dividend 92347 and add 0 to the quotient
\begin{array}{l}\phantom{60428)}0000\phantom{9}\\60428\overline{)92347}\\\end{array}
Use the 5^{th} digit 7 from dividend 92347
\begin{array}{l}\phantom{60428)}00001\phantom{10}\\60428\overline{)92347}\\\phantom{60428)}\underline{\phantom{}60428\phantom{}}\\\phantom{60428)}31919\\\end{array}
Find closest multiple of 60428 to 92347. We see that 1 \times 60428 = 60428 is the nearest. Now subtract 60428 from 92347 to get reminder 31919. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }31919
Since 31919 is less than 60428, stop the division. The reminder is 31919. The topmost line 00001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}