Evaluate
\frac{4613000}{8327}\approx 553.981025579
Factor
\frac{2 ^ {3} \cdot 5 ^ {3} \cdot 7 \cdot 659}{11 \cdot 757} = 553\frac{8169}{8327} = 553.9810255794404
Share
Copied to clipboard
\begin{array}{l}\phantom{16654)}\phantom{1}\\16654\overline{)9226000}\\\end{array}
Use the 1^{st} digit 9 from dividend 9226000
\begin{array}{l}\phantom{16654)}0\phantom{2}\\16654\overline{)9226000}\\\end{array}
Since 9 is less than 16654, use the next digit 2 from dividend 9226000 and add 0 to the quotient
\begin{array}{l}\phantom{16654)}0\phantom{3}\\16654\overline{)9226000}\\\end{array}
Use the 2^{nd} digit 2 from dividend 9226000
\begin{array}{l}\phantom{16654)}00\phantom{4}\\16654\overline{)9226000}\\\end{array}
Since 92 is less than 16654, use the next digit 2 from dividend 9226000 and add 0 to the quotient
\begin{array}{l}\phantom{16654)}00\phantom{5}\\16654\overline{)9226000}\\\end{array}
Use the 3^{rd} digit 2 from dividend 9226000
\begin{array}{l}\phantom{16654)}000\phantom{6}\\16654\overline{)9226000}\\\end{array}
Since 922 is less than 16654, use the next digit 6 from dividend 9226000 and add 0 to the quotient
\begin{array}{l}\phantom{16654)}000\phantom{7}\\16654\overline{)9226000}\\\end{array}
Use the 4^{th} digit 6 from dividend 9226000
\begin{array}{l}\phantom{16654)}0000\phantom{8}\\16654\overline{)9226000}\\\end{array}
Since 9226 is less than 16654, use the next digit 0 from dividend 9226000 and add 0 to the quotient
\begin{array}{l}\phantom{16654)}0000\phantom{9}\\16654\overline{)9226000}\\\end{array}
Use the 5^{th} digit 0 from dividend 9226000
\begin{array}{l}\phantom{16654)}00005\phantom{10}\\16654\overline{)9226000}\\\phantom{16654)}\underline{\phantom{}83270\phantom{99}}\\\phantom{16654)9}8990\\\end{array}
Find closest multiple of 16654 to 92260. We see that 5 \times 16654 = 83270 is the nearest. Now subtract 83270 from 92260 to get reminder 8990. Add 5 to quotient.
\begin{array}{l}\phantom{16654)}00005\phantom{11}\\16654\overline{)9226000}\\\phantom{16654)}\underline{\phantom{}83270\phantom{99}}\\\phantom{16654)9}89900\\\end{array}
Use the 6^{th} digit 0 from dividend 9226000
\begin{array}{l}\phantom{16654)}000055\phantom{12}\\16654\overline{)9226000}\\\phantom{16654)}\underline{\phantom{}83270\phantom{99}}\\\phantom{16654)9}89900\\\phantom{16654)}\underline{\phantom{9}83270\phantom{9}}\\\phantom{16654)99}6630\\\end{array}
Find closest multiple of 16654 to 89900. We see that 5 \times 16654 = 83270 is the nearest. Now subtract 83270 from 89900 to get reminder 6630. Add 5 to quotient.
\begin{array}{l}\phantom{16654)}000055\phantom{13}\\16654\overline{)9226000}\\\phantom{16654)}\underline{\phantom{}83270\phantom{99}}\\\phantom{16654)9}89900\\\phantom{16654)}\underline{\phantom{9}83270\phantom{9}}\\\phantom{16654)99}66300\\\end{array}
Use the 7^{th} digit 0 from dividend 9226000
\begin{array}{l}\phantom{16654)}0000553\phantom{14}\\16654\overline{)9226000}\\\phantom{16654)}\underline{\phantom{}83270\phantom{99}}\\\phantom{16654)9}89900\\\phantom{16654)}\underline{\phantom{9}83270\phantom{9}}\\\phantom{16654)99}66300\\\phantom{16654)}\underline{\phantom{99}49962\phantom{}}\\\phantom{16654)99}16338\\\end{array}
Find closest multiple of 16654 to 66300. We see that 3 \times 16654 = 49962 is the nearest. Now subtract 49962 from 66300 to get reminder 16338. Add 3 to quotient.
\text{Quotient: }553 \text{Reminder: }16338
Since 16338 is less than 16654, stop the division. The reminder is 16338. The topmost line 0000553 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 553.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}