Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

921m^{2}+11m-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-11±\sqrt{11^{2}-4\times 921\left(-2\right)}}{2\times 921}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-11±\sqrt{121-4\times 921\left(-2\right)}}{2\times 921}
Square 11.
m=\frac{-11±\sqrt{121-3684\left(-2\right)}}{2\times 921}
Multiply -4 times 921.
m=\frac{-11±\sqrt{121+7368}}{2\times 921}
Multiply -3684 times -2.
m=\frac{-11±\sqrt{7489}}{2\times 921}
Add 121 to 7368.
m=\frac{-11±\sqrt{7489}}{1842}
Multiply 2 times 921.
m=\frac{\sqrt{7489}-11}{1842}
Now solve the equation m=\frac{-11±\sqrt{7489}}{1842} when ± is plus. Add -11 to \sqrt{7489}.
m=\frac{-\sqrt{7489}-11}{1842}
Now solve the equation m=\frac{-11±\sqrt{7489}}{1842} when ± is minus. Subtract \sqrt{7489} from -11.
921m^{2}+11m-2=921\left(m-\frac{\sqrt{7489}-11}{1842}\right)\left(m-\frac{-\sqrt{7489}-11}{1842}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-11+\sqrt{7489}}{1842} for x_{1} and \frac{-11-\sqrt{7489}}{1842} for x_{2}.
x ^ 2 +\frac{11}{921}x -\frac{2}{921} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 921
r + s = -\frac{11}{921} rs = -\frac{2}{921}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{11}{1842} - u s = -\frac{11}{1842} + u
Two numbers r and s sum up to -\frac{11}{921} exactly when the average of the two numbers is \frac{1}{2}*-\frac{11}{921} = -\frac{11}{1842}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{11}{1842} - u) (-\frac{11}{1842} + u) = -\frac{2}{921}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{2}{921}
\frac{121}{3392964} - u^2 = -\frac{2}{921}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{2}{921}-\frac{121}{3392964} = \frac{7489}{3392964}
Simplify the expression by subtracting \frac{121}{3392964} on both sides
u^2 = -\frac{7489}{3392964} u = \pm\sqrt{-\frac{7489}{3392964}} = \pm \frac{\sqrt{7489}}{1842}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{11}{1842} - \frac{\sqrt{7489}}{1842}i = -0.053 s = -\frac{11}{1842} + \frac{\sqrt{7489}}{1842}i = 0.041
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.