Evaluate
\frac{920048}{99}\approx 9293.414141414
Factor
\frac{2 ^ {4} \cdot 57503}{3 ^ {2} \cdot 11} = 9293\frac{41}{99} = 9293.414141414141
Share
Copied to clipboard
\begin{array}{l}\phantom{99)}\phantom{1}\\99\overline{)920048}\\\end{array}
Use the 1^{st} digit 9 from dividend 920048
\begin{array}{l}\phantom{99)}0\phantom{2}\\99\overline{)920048}\\\end{array}
Since 9 is less than 99, use the next digit 2 from dividend 920048 and add 0 to the quotient
\begin{array}{l}\phantom{99)}0\phantom{3}\\99\overline{)920048}\\\end{array}
Use the 2^{nd} digit 2 from dividend 920048
\begin{array}{l}\phantom{99)}00\phantom{4}\\99\overline{)920048}\\\end{array}
Since 92 is less than 99, use the next digit 0 from dividend 920048 and add 0 to the quotient
\begin{array}{l}\phantom{99)}00\phantom{5}\\99\overline{)920048}\\\end{array}
Use the 3^{rd} digit 0 from dividend 920048
\begin{array}{l}\phantom{99)}009\phantom{6}\\99\overline{)920048}\\\phantom{99)}\underline{\phantom{}891\phantom{999}}\\\phantom{99)9}29\\\end{array}
Find closest multiple of 99 to 920. We see that 9 \times 99 = 891 is the nearest. Now subtract 891 from 920 to get reminder 29. Add 9 to quotient.
\begin{array}{l}\phantom{99)}009\phantom{7}\\99\overline{)920048}\\\phantom{99)}\underline{\phantom{}891\phantom{999}}\\\phantom{99)9}290\\\end{array}
Use the 4^{th} digit 0 from dividend 920048
\begin{array}{l}\phantom{99)}0092\phantom{8}\\99\overline{)920048}\\\phantom{99)}\underline{\phantom{}891\phantom{999}}\\\phantom{99)9}290\\\phantom{99)}\underline{\phantom{9}198\phantom{99}}\\\phantom{99)99}92\\\end{array}
Find closest multiple of 99 to 290. We see that 2 \times 99 = 198 is the nearest. Now subtract 198 from 290 to get reminder 92. Add 2 to quotient.
\begin{array}{l}\phantom{99)}0092\phantom{9}\\99\overline{)920048}\\\phantom{99)}\underline{\phantom{}891\phantom{999}}\\\phantom{99)9}290\\\phantom{99)}\underline{\phantom{9}198\phantom{99}}\\\phantom{99)99}924\\\end{array}
Use the 5^{th} digit 4 from dividend 920048
\begin{array}{l}\phantom{99)}00929\phantom{10}\\99\overline{)920048}\\\phantom{99)}\underline{\phantom{}891\phantom{999}}\\\phantom{99)9}290\\\phantom{99)}\underline{\phantom{9}198\phantom{99}}\\\phantom{99)99}924\\\phantom{99)}\underline{\phantom{99}891\phantom{9}}\\\phantom{99)999}33\\\end{array}
Find closest multiple of 99 to 924. We see that 9 \times 99 = 891 is the nearest. Now subtract 891 from 924 to get reminder 33. Add 9 to quotient.
\begin{array}{l}\phantom{99)}00929\phantom{11}\\99\overline{)920048}\\\phantom{99)}\underline{\phantom{}891\phantom{999}}\\\phantom{99)9}290\\\phantom{99)}\underline{\phantom{9}198\phantom{99}}\\\phantom{99)99}924\\\phantom{99)}\underline{\phantom{99}891\phantom{9}}\\\phantom{99)999}338\\\end{array}
Use the 6^{th} digit 8 from dividend 920048
\begin{array}{l}\phantom{99)}009293\phantom{12}\\99\overline{)920048}\\\phantom{99)}\underline{\phantom{}891\phantom{999}}\\\phantom{99)9}290\\\phantom{99)}\underline{\phantom{9}198\phantom{99}}\\\phantom{99)99}924\\\phantom{99)}\underline{\phantom{99}891\phantom{9}}\\\phantom{99)999}338\\\phantom{99)}\underline{\phantom{999}297\phantom{}}\\\phantom{99)9999}41\\\end{array}
Find closest multiple of 99 to 338. We see that 3 \times 99 = 297 is the nearest. Now subtract 297 from 338 to get reminder 41. Add 3 to quotient.
\text{Quotient: }9293 \text{Reminder: }41
Since 41 is less than 99, stop the division. The reminder is 41. The topmost line 009293 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9293.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}