Evaluate
5
Factor
5
Share
Copied to clipboard
\begin{array}{l}\phantom{1840)}\phantom{1}\\1840\overline{)9200}\\\end{array}
Use the 1^{st} digit 9 from dividend 9200
\begin{array}{l}\phantom{1840)}0\phantom{2}\\1840\overline{)9200}\\\end{array}
Since 9 is less than 1840, use the next digit 2 from dividend 9200 and add 0 to the quotient
\begin{array}{l}\phantom{1840)}0\phantom{3}\\1840\overline{)9200}\\\end{array}
Use the 2^{nd} digit 2 from dividend 9200
\begin{array}{l}\phantom{1840)}00\phantom{4}\\1840\overline{)9200}\\\end{array}
Since 92 is less than 1840, use the next digit 0 from dividend 9200 and add 0 to the quotient
\begin{array}{l}\phantom{1840)}00\phantom{5}\\1840\overline{)9200}\\\end{array}
Use the 3^{rd} digit 0 from dividend 9200
\begin{array}{l}\phantom{1840)}000\phantom{6}\\1840\overline{)9200}\\\end{array}
Since 920 is less than 1840, use the next digit 0 from dividend 9200 and add 0 to the quotient
\begin{array}{l}\phantom{1840)}000\phantom{7}\\1840\overline{)9200}\\\end{array}
Use the 4^{th} digit 0 from dividend 9200
\begin{array}{l}\phantom{1840)}0005\phantom{8}\\1840\overline{)9200}\\\phantom{1840)}\underline{\phantom{}9200\phantom{}}\\\phantom{1840)9999}0\\\end{array}
Find closest multiple of 1840 to 9200. We see that 5 \times 1840 = 9200 is the nearest. Now subtract 9200 from 9200 to get reminder 0. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }0
Since 0 is less than 1840, stop the division. The reminder is 0. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}