Evaluate
\frac{92013}{35}\approx 2628.942857143
Factor
\frac{3 \cdot 30671}{5 \cdot 7} = 2628\frac{33}{35} = 2628.942857142857
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)92013}\\\end{array}
Use the 1^{st} digit 9 from dividend 92013
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)92013}\\\end{array}
Since 9 is less than 35, use the next digit 2 from dividend 92013 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)92013}\\\end{array}
Use the 2^{nd} digit 2 from dividend 92013
\begin{array}{l}\phantom{35)}02\phantom{4}\\35\overline{)92013}\\\phantom{35)}\underline{\phantom{}70\phantom{999}}\\\phantom{35)}22\\\end{array}
Find closest multiple of 35 to 92. We see that 2 \times 35 = 70 is the nearest. Now subtract 70 from 92 to get reminder 22. Add 2 to quotient.
\begin{array}{l}\phantom{35)}02\phantom{5}\\35\overline{)92013}\\\phantom{35)}\underline{\phantom{}70\phantom{999}}\\\phantom{35)}220\\\end{array}
Use the 3^{rd} digit 0 from dividend 92013
\begin{array}{l}\phantom{35)}026\phantom{6}\\35\overline{)92013}\\\phantom{35)}\underline{\phantom{}70\phantom{999}}\\\phantom{35)}220\\\phantom{35)}\underline{\phantom{}210\phantom{99}}\\\phantom{35)9}10\\\end{array}
Find closest multiple of 35 to 220. We see that 6 \times 35 = 210 is the nearest. Now subtract 210 from 220 to get reminder 10. Add 6 to quotient.
\begin{array}{l}\phantom{35)}026\phantom{7}\\35\overline{)92013}\\\phantom{35)}\underline{\phantom{}70\phantom{999}}\\\phantom{35)}220\\\phantom{35)}\underline{\phantom{}210\phantom{99}}\\\phantom{35)9}101\\\end{array}
Use the 4^{th} digit 1 from dividend 92013
\begin{array}{l}\phantom{35)}0262\phantom{8}\\35\overline{)92013}\\\phantom{35)}\underline{\phantom{}70\phantom{999}}\\\phantom{35)}220\\\phantom{35)}\underline{\phantom{}210\phantom{99}}\\\phantom{35)9}101\\\phantom{35)}\underline{\phantom{99}70\phantom{9}}\\\phantom{35)99}31\\\end{array}
Find closest multiple of 35 to 101. We see that 2 \times 35 = 70 is the nearest. Now subtract 70 from 101 to get reminder 31. Add 2 to quotient.
\begin{array}{l}\phantom{35)}0262\phantom{9}\\35\overline{)92013}\\\phantom{35)}\underline{\phantom{}70\phantom{999}}\\\phantom{35)}220\\\phantom{35)}\underline{\phantom{}210\phantom{99}}\\\phantom{35)9}101\\\phantom{35)}\underline{\phantom{99}70\phantom{9}}\\\phantom{35)99}313\\\end{array}
Use the 5^{th} digit 3 from dividend 92013
\begin{array}{l}\phantom{35)}02628\phantom{10}\\35\overline{)92013}\\\phantom{35)}\underline{\phantom{}70\phantom{999}}\\\phantom{35)}220\\\phantom{35)}\underline{\phantom{}210\phantom{99}}\\\phantom{35)9}101\\\phantom{35)}\underline{\phantom{99}70\phantom{9}}\\\phantom{35)99}313\\\phantom{35)}\underline{\phantom{99}280\phantom{}}\\\phantom{35)999}33\\\end{array}
Find closest multiple of 35 to 313. We see that 8 \times 35 = 280 is the nearest. Now subtract 280 from 313 to get reminder 33. Add 8 to quotient.
\text{Quotient: }2628 \text{Reminder: }33
Since 33 is less than 35, stop the division. The reminder is 33. The topmost line 02628 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2628.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}