Solve for x
x=\frac{\sqrt{1990}}{18}-\frac{23}{9}\approx -0.077254664
x=-\frac{\sqrt{1990}}{18}-\frac{23}{9}\approx -5.033856447
Graph
Share
Copied to clipboard
18x^{2}+92x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-92±\sqrt{92^{2}-4\times 18\times 7}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, 92 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-92±\sqrt{8464-4\times 18\times 7}}{2\times 18}
Square 92.
x=\frac{-92±\sqrt{8464-72\times 7}}{2\times 18}
Multiply -4 times 18.
x=\frac{-92±\sqrt{8464-504}}{2\times 18}
Multiply -72 times 7.
x=\frac{-92±\sqrt{7960}}{2\times 18}
Add 8464 to -504.
x=\frac{-92±2\sqrt{1990}}{2\times 18}
Take the square root of 7960.
x=\frac{-92±2\sqrt{1990}}{36}
Multiply 2 times 18.
x=\frac{2\sqrt{1990}-92}{36}
Now solve the equation x=\frac{-92±2\sqrt{1990}}{36} when ± is plus. Add -92 to 2\sqrt{1990}.
x=\frac{\sqrt{1990}}{18}-\frac{23}{9}
Divide -92+2\sqrt{1990} by 36.
x=\frac{-2\sqrt{1990}-92}{36}
Now solve the equation x=\frac{-92±2\sqrt{1990}}{36} when ± is minus. Subtract 2\sqrt{1990} from -92.
x=-\frac{\sqrt{1990}}{18}-\frac{23}{9}
Divide -92-2\sqrt{1990} by 36.
x=\frac{\sqrt{1990}}{18}-\frac{23}{9} x=-\frac{\sqrt{1990}}{18}-\frac{23}{9}
The equation is now solved.
18x^{2}+92x+7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
18x^{2}+92x+7-7=-7
Subtract 7 from both sides of the equation.
18x^{2}+92x=-7
Subtracting 7 from itself leaves 0.
\frac{18x^{2}+92x}{18}=-\frac{7}{18}
Divide both sides by 18.
x^{2}+\frac{92}{18}x=-\frac{7}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}+\frac{46}{9}x=-\frac{7}{18}
Reduce the fraction \frac{92}{18} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{46}{9}x+\left(\frac{23}{9}\right)^{2}=-\frac{7}{18}+\left(\frac{23}{9}\right)^{2}
Divide \frac{46}{9}, the coefficient of the x term, by 2 to get \frac{23}{9}. Then add the square of \frac{23}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{46}{9}x+\frac{529}{81}=-\frac{7}{18}+\frac{529}{81}
Square \frac{23}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{46}{9}x+\frac{529}{81}=\frac{995}{162}
Add -\frac{7}{18} to \frac{529}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{23}{9}\right)^{2}=\frac{995}{162}
Factor x^{2}+\frac{46}{9}x+\frac{529}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{23}{9}\right)^{2}}=\sqrt{\frac{995}{162}}
Take the square root of both sides of the equation.
x+\frac{23}{9}=\frac{\sqrt{1990}}{18} x+\frac{23}{9}=-\frac{\sqrt{1990}}{18}
Simplify.
x=\frac{\sqrt{1990}}{18}-\frac{23}{9} x=-\frac{\sqrt{1990}}{18}-\frac{23}{9}
Subtract \frac{23}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}