Evaluate
\frac{23}{20}=1.15
Factor
\frac{23}{2 ^ {2} \cdot 5} = 1\frac{3}{20} = 1.15
Share
Copied to clipboard
\begin{array}{l}\phantom{80)}\phantom{1}\\80\overline{)92}\\\end{array}
Use the 1^{st} digit 9 from dividend 92
\begin{array}{l}\phantom{80)}0\phantom{2}\\80\overline{)92}\\\end{array}
Since 9 is less than 80, use the next digit 2 from dividend 92 and add 0 to the quotient
\begin{array}{l}\phantom{80)}0\phantom{3}\\80\overline{)92}\\\end{array}
Use the 2^{nd} digit 2 from dividend 92
\begin{array}{l}\phantom{80)}01\phantom{4}\\80\overline{)92}\\\phantom{80)}\underline{\phantom{}80\phantom{}}\\\phantom{80)}12\\\end{array}
Find closest multiple of 80 to 92. We see that 1 \times 80 = 80 is the nearest. Now subtract 80 from 92 to get reminder 12. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }12
Since 12 is less than 80, stop the division. The reminder is 12. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}