Evaluate
2.400384
Factor
\frac{2 \cdot 3 \cdot 7 \cdot 19 \cdot 47}{5 ^ {6}} = 2\frac{6256}{15625} = 2.400384
Share
Copied to clipboard
\frac{91.2\times 2350\times 0.036}{60\times 60}\times 1.12
Express \frac{\frac{91.2\times 2350\times 0.036}{60}}{60} as a single fraction.
\frac{0.036\times 47\times 91.2}{6\times 12}\times 1.12
Cancel out 5\times 10 in both numerator and denominator.
\frac{1.692\times 91.2}{6\times 12}\times 1.12
Multiply 0.036 and 47 to get 1.692.
\frac{154.3104}{6\times 12}\times 1.12
Multiply 1.692 and 91.2 to get 154.3104.
\frac{154.3104}{72}\times 1.12
Multiply 6 and 12 to get 72.
\frac{1543104}{720000}\times 1.12
Expand \frac{154.3104}{72} by multiplying both numerator and the denominator by 10000.
\frac{2679}{1250}\times 1.12
Reduce the fraction \frac{1543104}{720000} to lowest terms by extracting and canceling out 576.
\frac{2679}{1250}\times \frac{28}{25}
Convert decimal number 1.12 to fraction \frac{112}{100}. Reduce the fraction \frac{112}{100} to lowest terms by extracting and canceling out 4.
\frac{2679\times 28}{1250\times 25}
Multiply \frac{2679}{1250} times \frac{28}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{75012}{31250}
Do the multiplications in the fraction \frac{2679\times 28}{1250\times 25}.
\frac{37506}{15625}
Reduce the fraction \frac{75012}{31250} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}